ARI Research Note _96-55

Problem Solving and Learning in a Natural
Task Domain

Janet Kolodner and Lawrence Barsalou
Georgia Institute of Technology

Research and Advanced Concepts Office
Michael Drillings, Acting Director

March 1996

19960815 1

United States Army
Research Institute for the Behavioral and Social Sciences

Approved for public release; distribution is unlimited.

DTIC QUALITY INSPECTED 1

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST
QUALITY AVAILABLE. THE COPY
FURNISHED TO DTIC CONTAINED
A SIGNIFICANT NUMBER OF
PAGES WHICH DO NOT
~ REPRODUCE LEGIBLY.

U.S. ARMY RESEARCH INSTITUTE
FOR THE BEHAVIORAL AND SOCIAL SCIENCES

A Field Operating Agency Under the Jurisdiction
of the Deputy Chief of Staff for Personnel

EDGAR M. JOHNSON
Director

Research accomplished under contract
for the Department of the Army

Georgia Institute of Technology

Technical review by

Joseph Psotka

NOTICES

DISTRIBUTION: This report has been cleared for release to the Defense Technical Information
Center (DTIC) to comply with regulatory requirements. It has been given no primary distribution
other than to DTIC and will be available only through DTIC or the National Technical Information
Service (NTIS).

FINAL DISPOSITION: This report may be destroyed when it is no longer needed. Please do not
return it to the U.S. Army Research Institute for the Behavioral and Social Sciences.

NOTE: The views, opinions, and findings in this report are those of the author(s) and should not

be construed as an official Department of the Army position, policy, or decision, unless so
designated by other authorized documents.

REPORT DOCUMENTATION PAGE

1. REPORT DATE
1996, March

2. REPORT TYPE
Final

3. DATES COVERED (from. . . to)
September 1986-August 1989

4. TITLE AND SUBTITLE

Problem Solving and Learning in a Natural Task Domain

S5a. CONTRACT OR GRANT NUMBER
MDA903-86-C-0173

5Sb. PROGRAM ELEMENT NUMBER
0601102A

6. AUTHOR(S)

Janet Kolodner and Lawrence Barsalou (College of Computing--
Georgia Institute of Technology)

Sc. PROJECT NUMBER
B74F

5d. TASK NUMBER
BR41

Se. WORK UNIT NUMBER
Ci1

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Georgia Institute of Technology

College of Computing

Atlanta, GA 30332-0280

8. PERFORMING ORGANIZATION REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
U.S. Army Research Institute for the Behavioral and Social Sciences
ATTN: PERI-BR

5001 Eisenhower Avenue

Alexandria, VA 22333-5600

10. MONITOR ACRONYM
ARI

11. MONITOR REPORT NUMBER
Research Note 96-55

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES
COR: George Lawton

14. ABSTRACT (Maximum 200 words):

later problem solving in the context of troubleshooting.

This report explains the details of some of the problem solving and learning processes employed by novice problem solvers as they
become more expert. In particular, the researchers investigate the effects of individual problem solving and learning experiences on

15. SUBJECT TERMS
Problem solving

Symptom-fault pairs

Learning

Troubleshooting

19. LIMITATION OF
ABSTRACT

16. REPORT
Unclassified

17. ABSTRACT
Unclassified

18. THIS PAGE

Unclassified Unlimited

20. NUMBER 21. RESPONSIBLE PERSON
OF PAGES (Name and Telephone Number)
185

Final Report
Problem Solving and Learning in a Natural Task

Domain
MDA—903—86-C-173 I

Janet Kolodner
Lawrence Barsalou
College of Computing
Georgia Institute of Technology
Atlanta, GA 30332-0280
jlk@cc.gatech.edu

Our goal in this project has been to explain the details of some of the problem solving
and learning processes employed by novice problem solvers as they become more expert.
In particular, we have investigated the effects of individual problem solving and learning
experiences on later problem solving in the context of troubleshooting.

In year 1 of the project, we collected and analyzed protocols of students solving several
sequences of diagnostic problems in the domain of car mechanics. A theoretical analysis
of these protocols led us to several working hypotheses about problem solving and learning
(Lancaster & Kolodner, 1987, 1988).

First, we found three types of knowledge necessary for diagnosis.

e The qualitative causal model provides knowledge about what system behaviors
derive from other system behaviors or states. It is eventually made up of two parts:
the model of how the system works and the model of how it malfunctions.

e Symptom-fault pairs provide associational knowledge that associates symptoms and
other contextual factors with potential faults and allows the reasoner to indez into the
causal model.

¢ Reasoning strategies provide knowledge about what actions to take in solving a
problem.

Together, the three types of knowledge make up a reasoner’s mental model of a device.
The first two types of knowledge tell the reasoner how the device works. The third type of
knowledge tells him how to use the first two types in order to solve problems or troubleshoot.

The knowledge and organization of these different kinds of knowledge changes with expe-
rience. In the causal model, there are two notable changes that happen through experience.
First, connections between parts of the model are learned. The novice, for example, is clearly
unaware of the possibility that electronic failures can affect things like fuel delivery, since he
knows little about the dependencies between the fuel system and the electrical system, while
the more advanced mechanic not only knows that such relationships exist, he considers them
a highly common source of failures. Second, the organization of the model becomes more
hierarchical as students learn which parts are subsumed by or part of other systems. While
initial representations of the causal model seem to be flat (our interpretation of the way
novices went about solving problems), after considerable experience, the model becomes a
more complex, hierarchical system. A novice car mechanic, for example, might consider the
carborator of a car on equal footing with every other part of the engine, and in diagnosing
a particular problem might consider each part of the engine individually. More advanced
mechanics, on the other hand, seen to organize the parts of the engine into systems. The
data suggest that for experienced mechanics, components are organized hierarchically under
their respective systems and are never directly considered unless their system is determined
to house the failure, or at least to be the source of information crucial to locating the failure.
Similarly, the number, organization, and accuracy of the symptom-fault sets changes with
increasing experience.

Building partly on these changes in the knowledge structures, and partly on indepen-
dent effects of experience on decision processes, the mechanic’s reasoning strategies also
change. For example, procedures and guidelines for accepting hypotheses as diagnoses be-
come increasingly focussed on information that allow a causal interpretation of the behavior
observed. At the same time, the developing knowledge structures allow the mechanic to
search for and aquire more, and more accurate, information from his symptom-fault sets and
his causal model.

The interaction of these changes in both knowledge and process lead to the more accurate
and efficient problem solving seen in experts. His overall level of knowledge is increasing;
the organization and integration of his knowledge structures, both the symptom-fault sets
and the causal model, are increasing; and his processes and criteria for reaching diagnoses
are becoming more accurate, more efficient, and more focussed on causal information.

Based on analysis of the same protocols, we have identified five different real-world learn-
ing procedures used by the students and several roles a teacher or more experienced third
party must play in helping a student to learn at various stages.

¢ Learning by understanding explanations is the process by which students in-
tegrate a teacher’s explanation of how to solve a problem with their own diagnostic
knowledge.

e Active gap filling allows a student to fill in known gaps in his knowledge by asking
questions or looking in source books.

¢ Learning from interpreting feedback is used when the student is unable to evaluate
test results he has obtained. Interpretation may or may not require intervention of a
teacher, depending upon the student’s knowledge state.

e Abstraction lets the student reorganize his knowledge in better ways. It can be done
independently by a student or pointed out by a teacher.

o Case-based reasoning allows the student to improve his problem solving without
having a full understanding of how things work, and guides students in the building
of abstractions. The cases students remember might be their own attempts to solve
problems or the explanations given by a teacher of how to solve a problem. We have
identified three circumstances under which students seem to retain their experiences:
when an experience was unexplainable, when it provided the first introduction to some
concept,and when a serious mistake was made.

Appendix A explains this work in more detail.

Later work has followed up on these observations and hypotheses, both through exper-
imentation and through the implementation and evaluation of cognitive models of problem
solving and learning activities.

Work on the psychology side in Years 2 and 3 was on three tasks:

e continuing the theoretical analysis of the first year in an attempt to describe it more
rigorously, and in particular, to come up with a set of dimensions useful for assessing
observed learning,

e building an instruction tool called MECH that can be used to run experiments to find
out more detail about what people are learning and what instructional methods work
best in teaching those things,

o deriving experimental techniques and experiments that will allow us to rigorously de-
scribe both the learning students do and the contexts in which they do it.

Our implementations of cognitive models on the computer has focused on providing
more detail about the learning processes and representational structures suggested by the
protocols. Work has been in four areas:

e an in-depth investigation of learning by understanding explanations, a learning process
in which the student integrates what the teacher presents into his/her current mental
model, implemented in two programs — EDSEL1 and EDSEL2,

e investigation of the case-based reasoning processes employed during problem solving,
implemented in a program called CELIA,

e the creation of a representation of the knowledge used in troubleshooting that inte-
grates general and case knowledge and that supports all of the diagnosis and learning
procedures we have been studying,

e the creation of memory models that integrate the three different kinds of knowledge
problem solvers use and that support both learning processes that we have been inves-
tigating, implemented in several different versions of a program called CORA.

We explain each in turn, referring to published papers in the appendices of this report
for those parts of the research that have been published.

1 Mental Models: Representation and Use

The protocol studies we did in year one provided several hypotheses for us about the structure
of mental models, how their pieces can be accessed, and what needs to be learned to use
them well. We followed up that study with a study of the literature, and based on the
combination of protocols and literature, we have been able to derive a more substantial and
rigorous description of some of the knowledge used in reasoning about devices. We have
also come up with dimensions for assessing whether and how well this knowledge has been
learned.

1.1 Principles of Mental Models

We have found that the following representational assumptions and entities go a long way
in accounting for the structural aspects of mental models. First, any mental model is based
on the following three representational assumptions:

1. ANALOGICAL MAPPING: There is generally a 1:1 mapping of components and re-
lations in a physical device to representations of components and relations in a mental

model (Johnson-Laird, 1983).

e CAVEAT 1A: Not all components and relations in a physical device may be
represented in a mental model.

o CAVEAT 1B: Components and relations may not be correctly represented.

2. HIERARCHICAL ORGANIZATION: To the extent the organization of a physical
device is hierarchical, the organization of a mental model will be hierarchical. More
specifically, the device and the mental model both decompose to subsystems, which
in turn decompose to more specific subsystems, etc., before decomposing to terminal
components. Components belonging to two subsystems may occasionaly violate the
strict hierarchical organization of components. Even with these violations, it is still
possible to decompose a device in a quasi-hierarchical manner that serves as a useful
organization of components. In a small engine, decomposition may procede from the
engine to the ignition and fuel systems, from the ignition system to the magneto and
spark plug, from the magneto to the breaker points and coil, from the breaker points
to terminal components such as the stationary point and moving point.

3. MULTIPLE MODELS: A given mental model may be one of many possible for the
same physical device. There are many ways models can differ. There can be be simple
ways in which different people represent the same device in slightly different ways,
with there being more similarity than dissimilarity between models. On the other,
there may be multiple models for the same device that capture fundamentally different
kinds of 1/0O relations and serve fundamentally different kinds of reasoning goals (e.g.,
White and Fredericksen, 1986).

Any hierarchically-organized mental model contains the following representational enti-
ties:

¢ COMPONENTS: These include representations of the specific subsystems that com-
pose a more general subsystem, as well as the terminal components of the most specific
subsystems. In a small engine, components of the engine include the fuel system and
ignition system (decomposition of a general subsystem to more specific subsystems);
components of the coil include the primary wire and secondary wire (decomposition of
a subsystem to terminal components).

e INTERNAL RELATIONS: These are representations of the input/output relations
between components of a subsystem. In the ignition system, these include passage of
current from the magneto to the breaker points to the spark plug; in the fuel system,
these include passage of fuel from the tank to the fuel pickup pipe to the carburetor.

e EXTERNAL RELATIONS: These are representations of input/output relations from
one subsystem to another. External relations are only possible when a hierarchical
decomposition of a mental model exists. Note that external relations in some sense
provide violations of hierarchical structure, since they criss-cross the decomposition
hierarchy in ways that violate class inclusion. In a small engine, these include passage
of current from the ignition system to the cylinder assembly and displacement of the
drive train by the cylinder assembly.

Another kind of entity related to mental models seems quite interesting and important.
It is similar to what Murphy and Medin (1985) and Schank, Collins, and Hunter (1986) have
argued structures categories:

e CENERAL PHYSICAL MECHANISMS: These are representations of general physical
mechanisms that in some way help integrate (at least initially) the components and
relations of mental models. Examples of such mechanisms include the generation and
amplification of electrical energy, the combustion of air-fuel mixture, the build-up and
dissipation of heat, lubrication, and so forth. One way to think about these mechanisms
is as very abstract input/output relations between very abstract components. Once
these mechanisms are understood, they become mapped into more specific applications
to help produce mental models. An interesting question is whether acquiring them can
precede acquiring a mental model for a physical system or whether they are more easily
acquired after having gained knowledge of how at least one physical system works. It is
possible that the acquisition of a new mechanism may cause a person to fundamentally
restructure a mental model (Collins, Salter, & Tenney, 1987).

1.2 Processing Mental Models

We have found that three kinds of knowledge account for much of the reasoning we see people
doing about mental models. They are:

1. QUALITATIVE REASONING KNOWLEDGE: This knowledge specifies how the out-
puts from one component determine the outputs of another. People use this knowledge
to simulate performance of the device. Series of these rules may be applied to see how
an input to one component produces effects over paths of relations that emanate from
the component. Following Hegerty et al. (1988), the operation of these rules depends
on the properties of the the respective components, as well as on the inputs they receive
(e.g., the rate of fuel flow through a tube depends on its diameter, as well as on the
amount of fuel it receives as input). These properties and inputs provide constraints
on the behavior of components. Qualitative reasoning knowledge captures these con-
straints and allows qualitative prediction about performance. More specific forms of
this knowledge may allow quantitative prediction.

9. SYMPTOM-FAULT ASSOCIATIONS: These rules start with observed problematic
symptoms and provide hypotheses about what components might be at fault. For a
small engine, a symptom-fault rule might state that whenever there’s a strong gas smell
during engine operation, there’s a good chance the choke is broken. A more specific
symptom-fault rule might state that if, in addition to a strong gas smell, the engine
type is Briggs and Stratton, the condenser might be broken.

3. REASONING STRATEGIES: These include guidelines about how the topology of a
mental model should be searched to find a fault (e.g., breadth-first versus depth-first);
rules about the transitivity of qualitative reasoning rules (e.g., if component X produces
an input to component Y, and if component Y produces an input to component Z, then
X produces the input to Z); rules about how to handle remindings; etc. In contrast
to qualitative reasoning and symptom-fault knowledge, reasoning strategies are fairly
domain independent. In general, reasoning strategies guide the executive control of
troubleshooting by setting goals, deciding how to handle errors, handling interuptions
and unexpected results, etc. (cf. Norman & Shallice, 1986).

An organizational principle also seems important to processing:

e COMPILATION: With practice at using any sequence of inferences repeatedly, the
sequence may become compiled into a procedure that produces more efficient processing
in the future. Sequences of qualitative reasoning rules may become automated for
frequent kinds of qualitative reasoning. Sequences (or simultaneous sets) of symptom-
fault rules may become automated to zero in quickly on suspected faults. Sequences
of meta-rules may become automated to minimize wasted resources and non-optimal
behavior. Moreover, combinations of different types of rules may become automated
to the extent they frequently occur in a systematic pattern.

1.3 Learning Mental Models

There appear to be two important kinds of learning that can occur for mental models: (1)
learning a mental model and (2) learning to use a mental model for troubleshooting a physical
device. Learning mental models is addressed in this section; learning how to troubleshoot is
addressed in the next.

Learning a mental model can be assessed on the following dimensions:

1. ACQUISTION OF COMPONENTS: To what extent are the components of the phys-
ical device represented in the mental model? What do these representations look like
(content and structure)? How do they change over time? By what processes do they
change? What triggers these changes?

2. ACQUISITION OF HIERARCHICAL STRUCTURE: To what extent is the hierar-
chical organization of components in a physical device represented in the hierarchical
organization of components in the mental model? How does that change over time?
By what processes? What triggers these changes?

-1

3. ACQUISITION OF INTERNAL RELATIONS: Assuming components are hierarchi-
cally organized in a mental model, to what extent are the components within a partic-
ular subsystem integrated by the appropriate input/output relations? What does the
representation look like (content and structure)? How does it change over time? By
what processes? What triggers these changes?

4. ACQUISITION OF EXTERNAL RELATIONS: Assuming subsystems are hierarchi-
cally organized in a mental model, to what extent are they integrated by the appropri-
ate input/output relations? What is the content of the integration (i.e., what relations
are there)? How does it change over time? By what processes? What triggers change?

5. ACQUISITION OF GENERAL PHYSICAL MECHANISMS: To the extent that gen-
eral physical mechanisms are important to properly integrating the components of a
mental model, to what extent are these mechanisms represented and integrated with
the model? What does the representation look like? How does it change over time?
By what processes? What triggers change?

6. ACQUISITION OF MULTIPLE MENTAL MODELS: To the extent that fundamen-
tally different models can usefully represent the same device. to what extent have they
been represented and integrated? What does the integration look like? By what pro-
cesses does the integration happen? How does it change over time? What triggers
change?

The mental model includes both a model of how the device functions normally and a
model of how it malfunctions. Questions above must be applied to both of those models. In
addition, we must find out how these two models are integrated with each other? By what
processes? How that integration changes over time? What triggers these changes?

1.4 Learning to Troubleshoot

Learning how to use a mental model during troubleshooting can be assessed on the following
five dimensions:

1. USE OF REMINDINGS: To what extent do people use previous problem solving
episodes to solve new problems (Ross, 1984)? The natural contrast is: To what extent
do people use strategies such as breadth- first search to solve problems? Related is-
sues include: What characteristics of the current problem trigger a reminded episode?
What information about a previous problem gets stored in an episode? What informa-
tion is utilized from an episode? How is this information used in the current problem?
What kind of generalization takes place as a result?

2. ACQUISITION OF SYMPTOM-FAULT RULES: To what extent do people develop
symptom-fault rules? Are they generalized from a single episode or from several? If
several, how many? What information do they keep? What information do they throw
away? Note that other information besides symptoms may constitute the triggering
conditions of these rules (e.g., kind of engine, maintenance history, etc.) How are
symptom-fault rules related in memory to the episodes that produced them? How are
they represented in the mental model? How are they integrated with other knowledge
in the mental model? How are they accessed once acquired?

3. ACQUISITION OF QUALITATIVE REASONING RULES: To what extent have rules
been acquired that allow accurate simulation with the model? To the extent these
rules are present, accurate prediction of how the system will behave should be possible
given an input. Of interest is whether predictions about normal functioning are more
accurate than predictions about how the engine functions when broken. Both the
models of a functioning device and a non-functioning device must be examined here.

4. ACQUISITION OF REASONING STRATEGIES: To what extent do people develop
various high-level rules and strategies such as breadth-first search to support trou-
bleshooting? To what extent are reasoning strategies created for troubleshooting the
current device, versus being adapted from some other domain or specialized from an
abstract strategy? What aspects of the current troubleshooting create or modify these
rules? What exactly do these strategies look like for troubleshooting?

5. FURTHER ACQUISITION OF THE MENTAL MODEL: To what extent do people
continue developing knowledge of the mental model during troubleshooting? All six
kinds of knowledge described in the previous section can be learned. To the extent
such learning takes place. what conditions promote it? What processes allow it? Which
items are best learned by which processes?

2 MECH: An experimental tool for studying the ac-
quisition of device models and troubleshooting knowl-
edge

In order to systematically study the acquisition of problem solving knowledge from expe-
rience, we have had to design an experimental tool that could be used both to present
problems to students and to collect data. MECH is both a device simulator and experimen-
tal tool, functioning as a presentation and data collection tool and also giving students a
way to manipulate the device they are troubleshooting. MECH is an especially important
part of the work done on this contract. As an experimental tool built to record the results
of experiments in a teaching environment. it has the potential to serve several functions:

e It provides a simulation environment for problem solving, including graphics and help
facilities. Thus, with the right knowledge in it, it could be used by students to practice
what they have learned without the need for the particular device they have learned
about being available.

e It provides an environment for teaching. It has facilities for providing feedback, for
providing explanations to students, and for choosing problems to work on. It could
therefore be used as a teaching tool.

e It provides an environment for experimentation. It records key strokes and keeps track
of latency times. It also allows for different kinds of teaching/learning situations to
be set up, thus allowing an experimenter to both explore the learning and problem
solving procedures students are using and evaluate the differences between several
different teaching strategies.

While MECH’s current knowledge allows it to be used to teach automotive troubleshoot-
ing, it has been designed with generality in mind. We believe that MECH has much to
offer the military in terms of training its personnel about the structure of devices and how to
troubleshoot them. Once the necessary data base for a particular device has been developed,
MECH can be used for a number of purposes:

1. MECH could be used to train a user quickly about the systems and components in a
device, along with the qualitative relations between them.

9. MECH could be used as a teaching device, with instructors using it to demonstrate var-
ious troubleshooting techniques (e.g., breadth-first search, symptom-fault rules, quali-
tative reasoning).

3. MECH could be used to provide students with simulated practice at troubleshooting
on their own. Frequent types of repairs could be demonstrated, as well as pitfalls that
can occur by misreading symptoms or following faulty decision procedures.

4. MECH could be used as an online manual to remind someone of a device’s components
and their relations to one another.

5. MECH could be used as an online troubleshooting aid. Because its database contains
all possible diagnostic tests and repairs for a device, a user can look up what could
possibly be wrong. MECH currently has no information about symptoms and their
relations to faults. However, this could be easily integrated into MECH in its current
form.

Appendix B explains MECH in detail.

10

3 Experimental Techniques for Studying the Learn-
ing and Troubleshooting of Mental Models

The final task of our psyvchology team in following up on the year 1 study was to derive
experimental techniques for studying subjects learning mental models and reasoning about
them and to run some pilot experiments. In particular, we were interested in the role
individual experiences play in the acquisition of knowledge about devices and troubleshooting
and the evolution over time of the knowledge and reasoning capabilities of our subjects. The
techniques we have come up with are sensitive to these things. These techniques are being
used in follow-up experimentation in the next phase of the project, supported by a follow-on
contract. In this section, we detail the experimental techniques we derived. In Appendix
C, we excerpt relevant sections of the Interim Report from the follow-on contract to show
where some of these ideas have led. '

3.1 Measuring the Acquisition of Mental Models

Earlier we presented six parts of the mental model that are learned: components, hierarchical
structure, internal relations, external relations, general physical mechanisms, and multiple
mental models. In the context of using MECH, we are not currently able to study the
acquisition of general physical mechanisms or multiple mental models (although MECH
could be made to handle these with a moderate amount of effort). Consequently, we are
only in a position to address the acquisition of components, hierarchical organization, internal
relations, and external relations. Arguably, however, these are the most basic aspects of
mental models to study.

1. TIMECOURSE ISSUES. There are four timecourse issues that must be considered in

assessing acquisition. They are:

(a) RELATIVE ACCRUAL OF COMPONENTS AND RELATIONS: What kinds of
information accrue early in the acquisition of a mental model? What kinds of in-
formation come in late? Do components generally precede internal relations? Do
external relations generally precede internal relations? Some theories make these
predictions. On the other hand, these various types of information may accrue
at relatively equal rates. Another issue concerns the heigth of information in the
topology of the engine. Are components and relations from higher-level subsys-
tems acquired faster than components and relations from lower-level subsystems?

(b) RELATIVE ACCRUAL OF ORGANIZATION: How does the organization of a
mental model change over time? Are early models relatively unhierarchical, with
later models becoming increasingly differentiated according to subsystems? Or are
early models primarily organized hierarchically in terms of components, with later
models become organized more functionally by internal and external relations?

11

()

RELATIVE LOSS OF COMPONENTS AND RELATIONS: After a model has
been acquired, which kinds of information are retained the longest and which are
forgotten most rapidly? For example, are components better remembered than
relations? Are external relations remembered better than internal relations? Are
components that are involved in more relations better remembered than compo-
nents involved in fewer relations? Is information higher in the hierarchy better
remembered than information lower in the hierarchy?

RELATIVE LOSS OF ORGANIZATION: To what extent is organizational infor-
mation lost over time? What kinds of organizational information are best remem-
bered? Is loss of organizational information dependent on hierarchical height? Is
organizational information lost more rapidly than component information?

2. EXPERIMENTAL TECHNIQUES. The following experimental techniques can be used
to address these questions:

(a)

MEASURING MENTAL MODELS AT VARIOUS POINTS IN LEARNING.
Subjects could receive multiple tutoring sessions on a physical device, with the
same material being presented in each session (i.e., utilizing MECH under exper-
imenter control). At the end of each session, we could assess a subject’s current
model with various recall and recognition measures. By coding responses with
respect to components, internal relations, external relations, organization, and
hierarchical height, we can assess how much of each kind of learning occurred.
By comparing these measures across sessions, we can see what kinds of learning
occur early versus late during acquistion of the model. In other words, we can
track the timecourse of learning for these various aspects of the mental model.

Another way to do this study would be to allow subjects to use MECH however
they wish to tutor themselves (i.e., utilizing MECH under subject control). We
could stop subjects at various points and assess their memory for the different
kinds of information. Subjects could return for subsequent sessions of a similar
type. By also seeing how subjects search through the tutor to learn, we can also
get a sense of the kinds of information they want to see early in learning versus
the kind of information they want to see late.

MEASURING MENTAL MODELS AFTER VARYING DELAYS. After subjects
have achieved some criterial level of learning, we can test them after varying
delays (e.g., immediately, 1 day, 1 week, 2 weeks, 4 weeks, 3 months, 6 months, 1
year). This could be done both between and within subjects. Between-subjects
testing would allow the best assessment of what kinds of information are lost at
what rate over time. Within- subject testing, in conjunction with between-subject
testing, would allow assessing the extent to which testing maintains the mental
model in memory. More specifically, subjects could be tested after 1 week, again
after 1 month, again after 6 months, and again after 1 year. Of interest would be
seeing how their forgetting at each point in time compared to the forgetting of

12

the comparable between-subjects group. Another useful manipulation would be to
run a third condition in which subjects received tutoring instead of testing. More
specifically, subjects could be tutored again after 1 week, again after 1 month,
again after 6 months, and again after 1 year. Of interest would be seeing how
their forgetting at each point in time compared to the forgetting of the comparable
within-subjects, testing group. Does subsequent tutoring or testing best maintain
a mental model in memory?

MODERATION BY LEARNING CONDITIONS. Actually, assessing the accrual
and loss of information in mental models may be moderated by learning con-
ditions. For example, some learning conditions may optimize the learning of
components, others may optimize the learning of relations, etc. Several examples
of learning conditions are:

e LEARNING COMPONENTS FIRST WITHOUT LEARNING RELATIONS
OR ORGANIZATION

e LEARNING INTERNAL RELATIONS WHILE LEARNING COMPONENTS

e LEARNING THE HIERARCHICAL ORGANIZATION OF COMPONENTS
WHILE LEARNING COMPONENTS

e LEARNING HIERARCHICAL ORGANIZATION AND EXTERNAL RE-
LATIONS WHILE LEARNING COMPONENTS

The central issue in the above learning methods concerns the proper mix of infor-
mation to give subjects at various points in learning. Does compartmentalizing
information lead to faster or slower learning, and does it lead to better or poorer
memory? Or does mixing various types of information optimize learning and
memory? If mixing is better, then what are the optimal mixes? Over what time-
course? The basic way to answer these questions is simply to manipulate learning
conditions and observe the effects on learning and retention. Another interesting
learning mode is:

¢ LEARNING ABOUT COMPONENTS, RELATIONS, AND ORGANIZA-
TION IN THE CONTEXT OF TROUBLESHOOTING

Subjects may acquire information about a mental model faster if they are trying
to troubleshoot it than if their task is simply to memorize the material. This kind
of learning may also produce the best retention of mental models. One problem
is that the haphazardness of problem solving may make it difficult for subjects to
receive systematic and exhaustive coverage of the engine’s structure and function.
Consequently, a mix of troubleshooting and tutoring may be optimal.

3.2 Measuring the Acquisition of Troubleshooting

Farlier we presented four kinds of learning that could occur during troubleshooting: remind-
ings, symptom-fault rules, qualitative reasoning knowledge, and reasoning strategies. In the

13

context of using MECH, we are currently able to study all four.

The following nine paradigms may provide various insights into the role that remindings,
symptom-fault rules, qualitative reasoning knowledge, and reasoning strategies play in the
development of troubleshooting expertise:

1. THE DISTRIBUTION OF STRATEGY TYPES OVER THE DEVELOPMENT OF
EXPERTISE

2. FACTORS THAT DETERMINE REMINDINGS

3. FACTORS THAT DETERMINE THE USE OF SYMPTOM-FAULT RULES

4. FACTORS THAT DETERMINE THE USE OF QUALITATIVE REASONING RULES
5. FACTORS THAT DETERMINE THE USE OF REASONING STRATEGIES

6. THE EFFECT OF MENTAL MODELS ON TROUBLESHOOTING

7. THE EFFECT OF TROUBLESHOOTING ON MENTAL MODELS

8. THE ORGANIZATION OF TROUBLESHOOTING EPISODES IN MEMORY

9. THE CONTENT OF EPISODES AND SYMPTOM-FAULT RULES.

Each of these nine paradigms is discussed in turn.

1. THE DISTRIBUTION OF STRATEGY TYPES OVER THE DEVELOPMENT OF
EXPERTISE. The basic question is: To what relative extents do subjects use remind-
ings, symptom-fault rules, qualitative reasoning rules, and reasoning strategies over
the development of expertise. Do novices initially use reasoning strategies such as
breadth-first and depth-first search to find faults? Do they sometimes use qualitative
reasoning to map symptoms onto possible faults? After subjects have performed a
number of troubleshooting episodes, do they start using remindings to guide search?
Once they have been reminded a few times, do they start using symptom-fault rules
that are generalizations of remindings? After subjects have acquired symptom-fault
rules, what do they do upon receiving a problem that bears no resemblance to a pre-
vious problem? Are they more likely now to use qualitative reasoning, or do they fall
back on reasoning strategies? Does the likelihood of qualitative reasoning increase or
decrease with experience?

We can study these questions by giving subjects problem sets of 100 problems over
several hours, for example, where each problem presents a broken engine with one
or more faults. By manipulating the similarity of job characteristics across problems

14

(i.e.,

customer, engine type and model, symptoms, maintenance history, previous re-

pairs, customer observations, and faults), we can create conditions that will produce
remindings and generalizations. We can identify the use of various strategies using the
following techniques:

(a)

(d)

REASONING STRATEGIES. If subjects are using reasoning strategies such as
breadth-first and depth-first search, then we will be able to determine this by the
pattern of their keystrokes (which are stored completely during troubleshooting).
Subjects using breadth-first search, for example, should test all the highest-level
systems first before proceeding to more specific subsystems and terminal compo-
nents.

QUALITATIVE REASONING RULES. If subjects are using qualitative reason-
ing rules, then we should see two sorts of patterns in their keystrokes. First, if
subjects draw qualitative inferences from symptoms to faults, we should see them
go directly to the correct fault without going through something like breadth-first
or depth-first search. For example, the symptom ”strong smell of gas while engine
is running” is connected by various qualitative rules to the choke, throttle, and
air intake. If the subject immediately tests these components, we can assume
they are pursuing qualitative reasoning of a sort. Second, subjects may use the
outcome of a test to direct search, rather than continuing with a meta-rule. For
example, if a subject discovers that no fuel is reaching the cylinder and that the
intake valve is not broken, then the subject may reason that something in the
carburetor must be clogged or broken.

REMINDINGS. If subjects are using remindings, then upon receiving a job that
shares characteristics with one previous job, they should immediately test the
component(s) at fault in the previous job. They should not use a meta-rule or
qualitative reasoning to determine search.

SYMPTOM-FAULT RULES. If subjects are using symptom-fault rules, then upon
receiving a job that shares characteristics with two or more previous jobs, they
should immediately test the component(s) at fault in the previous job. It is es-
sential to note that subjects could be using remindings at this point. In general,
it is difficult if not impossible to discriminate exemplar from generalization mod-
els, empirically speaking. There may be a fundamental indeterminacy problem
here that can not be resolved, much like the indeterminacy problems for serial
versus parallel processing and imaginal representations versus propositional rep-
resentations. Nevertheless, we may discover that there are ways to differentiate
these accounts, and we will attempt to do so. Otherwise, we will probably make
a theoretical assumption that subjects who show learning after receiving two or
more problems of a particular type have extracted a symptom-fault rule. Issues
concerning the induction of symptom-fault rules are addressed in a later section.

In summary, we will use patterns in subjects’ keystroke files, in conjunction with our

15

o

knowledge of the problems they have received, to assess their strategies in locating
faults. Again, our primary interest will be to see the relative extent to which these
strategies are used over the development of expertise.

FACTORS THAT DETERMINE REMINDINGS. Basic questions include: To what
extent must the current job overlap in features with a previous job for the previous
job to be reminded? What kinds of features produce the most frequent remindings,
holding amount of overlap constant? Are remindings more likely to occur early in
learning rather than late? To what extent must a previous job have occurred recently
for it to be reminded? Finally, imagine that a previous job (the ”target job’) is similar
to the current job on several features. Further imagine that we vary the extent to
which other previous jobs are similar to target job on features different from those
shared by the target and current jobs. Does this decrease or increase the probability
of the current job reminding the target job? In other words. if the target job is part
of a cluster that may have been generalized, how does this affect accessibility of the
target?

We can study all of these questions in MECH by constructing pairs of problems that
overlap on certain features. We can manipulate the number of shared features, the type
of shared features, the number of intervening problems, and whether the pair occurs
early or late in learning (holding the number of intervening problems constant). We
can also manipulate the similarity of previous problems to the target. In all cases, we
can assume reminding has occurred if a subject first tests the same component that
was at fault in the target problem.

FACTORS THAT DETERMINE THE USE OF SYMPTOM-FAULT RULES. Basic
questions include: To what extent must two or more jobs overlap in features for a
symptom-fault rule to be constructed? What kinds of features are most likely to
produce a symptom-fault rule, holding amount of overlap constant? How does the
probability of forming a symptom-fault rule increase with the number of similar jobs?
Are symptom-fault rules more likely to develop late in learning rather than early in
learning? Are massed or distributed episodes more likely to produce symptom-fault
rules? When a symtpom-fault rule is formed, what information is extracted? Only
information that can be related to the fault by qualitative reasoning? Or irrelevant
information as well? If irrelevant information is included, is it just as likely to trigger
the symptom-fault rule as is relevant information? Finally, how are symptom-fault
rules related in memory to the episodes that produced them? Are they clustered
together such that activating the symptom-fault rules also activates the episodes? Or
are they stored separately?

We can study all of these questions in MECH by constructing sets of problems that
overlap on certain features. We can manipulate the number of shared features, the type
of shared features, and the number of problems sharing features. We can manipulate
whether similar jobs are massed or distributed and whether they occur early or late

16

in learning. We can see whether the conditions for a symptom-fault rule contain
irrelevant as well as relevant information by seeing if later problems that only contain
the irrelevant information fire the rule. In all cases, we can assume that a symptom-
fault rule has been formed if a subject first tests the same component that was at
fault in the previous problems that produced the rule. Again it is important to note
the difficulty of disciminating pure exemplar accounts from generalization accounts.
Whether a symptom-fault rule is stored with its episodes is addressed in the paradigm
that addresses the organization of episodes, discussed below.

. FACTORS THAT DETERMINE THE USE OF QUALITATIVE REASONING RULES.
Basic questions include: Does prior training on the structure and function of a phys-
ical device transfer to qualitative reasoning during troubleshooting? If a subject first
learns internal and external relations from a tutor, does this later facilitate reasoning
about how a symptom might be produced by a faulty component? Or about how a
faulty component might affect another component? Perhaps subjects really only learn
to reason qualitatively in the process of troubleshooting. If so, then what types of
troubleshooting experience best promote the acquistion of qualitative reasoning rules?
To the extent problems form predictable clusters and produce predictive symptom-
fault rules, do subjects not learn to reason qualitatively? To the extent problems don’t
have much predictive structure at all, do subjects primarily use meta-rules and forego
qualitative reasoning? Does qualitative reasoning primarily develop when subjects
are faced with relatively novel problems, where knowing qualitative relations between
components can facilitate search? If so, do these problems promote better qualitative
reasoning skills than learning about qualitative relations from a tutor?

We can study these problems in MECH in a couple of ways. First, we can vary the kind
of tutoring a subject receives before troubleshooting to see if tutoring affects the ability
to reason qualitatively. If tutoring can promote this skill, then we should see benefits
from some types of tutoring but not others. Second, we can study qualitative reasoning
by controlling the composition of the problem set. We can manipulate the amount and
type of predictive structure in the problem set to see if these factors determine how
well subjects reason qualitatively.

Measuring the ability to reason qualitatively can be done in two ways. First, we can ask
subjects specific questions about the relations between two components. For example,
"If the magneto is broken, what other components might not function properly?”
Or, ”If the magneto is not working properly but is not broken, what other components
might be broken, thereby causing the magnetoto malfunction?” Second, we can observe
qualitative reasoning indirectly by looking at how subjects search for faults. On some
problems, symptoms may be qualitatively related to the faults. If subjects are good
at qualitative reasoning, they should make the connection and find the fault quickly.
On other problems, we can direct subjects to a component that is not broken but that
is not working properly. If subjects are good at qualitative reasoning, they should
converge quickly on the faulty component that is making the unbroken component

17

perform improperly.

. FACTORS THAT DETERMINE THE USE OF REASONING STRATEGIES. Basic
questions include: Do subjects generally prefer breadth-first or depth-first search?
What conditions promote these preferences? What other general rules do subjects
develop to direct problem solving?

To see whether subjects prefer breadth-first to depth-first search, we will in some cases
present them with problem sets that have no predictive structure and see what they
do. To see whether different conditions promote these two types of search, we will
simply note situations where a particular type of search is preferred. At this point, it
is not clear what these situations might be. As far as other general rules, we again
don’t have any specific hypotheses and will simply be on the look out for systematic
patterns that suggest the use of meta-rules.

. THE EFFECT OF MENTAL MODELS ON TROUBLESHOOTING. The basic ques-
tion here is: What effect does prior tutoring on a mental model have on troubleshoot-
ing? Are subjects any better at troubleshooting after having learned the structure and
function of the device to be repaired? If so, then are particular types of tutoring better
than others at promoting troubleshooting skill? Does focusing on hierarchical structure
during tutoring encourage breadth-first and depth-first search during troubleshooting?
Does exposing subjects to all the possible tests and repairs during tutoring lead to bet-
ter troubleshooting later? If so, does presenting tests and repairs work best when they
are presented breadth- first, depth-first, or following paths of qualitative reasoning?

To assess this question, we will tutor subjects in various ways described in Section 5
and see what kinds of tutoring produce the best troubleshooting. We will also include a
condition with no troubleshooting to see if these subjects do as well as tutored subjects.
The measure of troubleshooting ability will simply be how quickly subjects find faults
(i.e., how closely actual costs approximate ideal costs in the payoff structure). We will
also look more specifically at the abilities to reason qualitatively, to use meta-rules,
and to construct symptom-fault rules, all of which may be affected by various kinds of
tutoring,.

. THE EFFECT OF TROUBLESHOOTING ON MENTAL MODELS. The basic ques-
tion is: What effect does troubleshooting have on learning mental models? Do people
learn mental models better in the context of troubleshooting than in a tutoring con-
text? If troubleshooting primarily serves to increase the quality of a mental model,
what kinds of changes does it produce?

We can explore these questions by assessing people’s mental models after troubleshoot-
ing, using all the same measures described earlier in Section 5 (e.g., knowledge of
components, internal relations, external relations, hierarchical organization). If trou-
bleshooting alone produces better learning than tutoring alone (givena constant amount
of time spent), then troubleshooting subjects should score higher on these measures

18

4

than tutoring subjects. To see how troubleshooting changes already established models,
we can first tutor subjects on a mental model, then have them perform troubleshoot-
ing, and then assess their mental model. We can compare these subjects to others who
were tutored but who did not perform troubleshooting. We can then see what kinds
of differences exist between the mental models of these two groups on our variety of
mMemory Imeasures.

. THE ORGANIZATION OF TROUBLESHOOTING EPISODES IN MEMORY. The

basic question is: How are episodes integrated with symptom-fault rules and qualitative
reasoning rules? If subjects store episodes with the rules that identified their faults,
then subjects should later cluster episodes that share a common rule. For example, if
several episodes involved the same qualitative reasoning rule, then these episodes should
be recalled together. If several episodes involved the same symptom-fault rule, then
these episodes should be recalled together. Another possibility is that subjects store
episodes according to the topology of the model, with each episode being associated
with its fault(s) or with every component that was tested.

We can assess this issue by asking subjects to recall all previous jobs at the end of
troubleshooting. To the extent that subjects have organized exemplars according to
particular organizational principles, we should see jobs clustered in those ways.

. THE CONTENT OF EPISODES AND SYMPTOM-FAULT RULES. The basic ques-

tion is: What information is recorded in memory for episodes and symptom fault rules.
Are memories of episodes biased toward information relevant to finding the fault? Or
is irrelevant information remembered well, too? Do symptom-fault rules contain only
predictive information? Or do subjects also generalize over irrelevant information that
is not predictive?

To assess these questions, we can ask subjects to recall information about previous jobs
and about the conditions of symptom-fault rules. For episodes, we can give subjects
enough information to identify a job and then ask them to recall the remaining details.
We can further probe their memories by specifically asking them to recall the type of
engine, the maintenence history, etc. For symptom-fault rules, we can give subjects a
fault that occurred in more than one job and ask them to provide characteristics shared
by jobs having that fault. Again we can probe subjects by specifically asking them to
recall the type of engine, the maintenence history, etc. Using these recall techniques,
we can assess the information stored with episodes and symptom-fault rules.

Exploring learning processes through Al modeling

Our other major thrust has been to build computational models of some of the processes
we saw our subjects using to find out more about how these processes might work. Our
intention in building systems has been to find out more about what knowledge is needed and

19

what knowledge is helpful in learning how to solve problems and under what circumstances
it is easy to acquire that knowledge from experience. Modeling reasoning processes on the
computer gives a means of investigating how processes work in ways that are not possi-
ble using people. It also gives us a way to state concretely the steps involved in carrying
out the reasoning. In essense, we have been building a model of the ideal novice problem
solver. Feedback from this model building process serves two purposes: It informs subse-
quent systematic experimentation with people, showing where effort should be placed in
experimentation, and it might ultimately provide us with guidelines for developing teaching
strategies and systems that teach.

4.1 The Active Learner

Work on CELIA has been aimed at modelling the reasoning and learning processes of a
student learning by watching and listening to a teacher explain particular troubleshooting
cases. A novel feature of this model is its commitment to case-based reasoning as a
natural reasoning process of the learner. Using case-based reasoning, a reasoner solves new
problems by making reference to previous situations similar to the current one and adapting
the solutions to the old problem to the new situation.

The model we have developed based on the protocols collected in Year 1 is a model of
the student as an active intentional learner. As this active learner watches and listens to
a teacher performing some troubleshooting task, he/she/it predicts what the teacher will
do or say next. When predictions don’t match what the teacher says or does, the reasoner
attempts to explain the discrepancy and learns from it. Case-based reasoning’s major role
is in aiding the prediction process. Predictions that the student makes often come from
previous troubleshooting cases remembered in the course of reasoning.

Descrepancies play a large role in the model. The program compares its predictions with
what the teacher does and when they differ, sets up explicit learning goals. To do that, it
characterizes the reasoning failure and figures out what it would have needed to know to get
it right. This results in learning goals that the reasoner then attempts to pursue through
appropriate plans.

The framework is a general approach that can be used to unify learning of several different

kinds of concepts learned during troubleshooting:

¢ learning an unknown goal (e.g., the reasoner didn’t know that a complaint needs to be

verified)

e learning feature salience (i.e., under what conditions certain features are important to
attend to)

e Learning By Understanding Explanations (i.e., filling in gaps in one’s causal knowledge
by integrating a teacher’s explanations with what is already known)

20

=

/

In addition, it is a framework that can support several other learning processes:

e Adjusting selection of predictions from possibilities

Filling a gap when faced with reference to unfamiliar information

Filling a gap when lacking an answer to an instructor’s question

Learning by asking focused questions.

Integrating an instructor’s hint into domain knowledge

¢ Directed reading

Articles that further describe CELIA and the model it implements can be found in
Appendices D and E.

4.2 Learning by Understanding Explanations

Within this framework for intentional learning, one area we have studied extensively is learn-
ing by understanding an instructor’s explanations (LBUE), one of the learning processes we
observed in student car mechanics. In LBUE, the motivated student searches for explana-
tions of why the instructor performed a particular action or proposed a particular solution.
The instructor’s role is to help the student complete explanations when the student’s un-
derstanding of the domain is somehow deficient. The instructor does this by revealing some
hidden but necessary reasoning of which the student might not be aware. The student then
uses this information to help complete his understanding of the example. A more com-
plete understanding permits more learning. LBUE tells us much about both learning and
instruction. Papers in Appendix D explain LBUE in detail.

Figure 1 summarizes the general LBUE process. Essentially, the instructor presents the
problem, an appropriate action or solution, and any hidden reasoning that the instructor
considers useful to the student. The student uses the supplied hidden reasoning to under-
stand or explain why the instructor’s action or solution is appropriate. In general, a student
or learning system applying this algorithm has a background domain model that is not nec-
essarily complete or consistent and a set of procedural or declarative rules that help direct
the search for explanations in the given domain.

1. For each example, the instructor states and refines the problem description and goals.
2. The student attempts to generate an appropriate action or solution for the problem.

3. If necessary, the instructor generates a correct action or solution.

21

4. The student then attempts to explain this action by reasoning in both directions, from the problem
description and from the solution.

o small gaps are filled by some form of plausible inference, and complete explanations can be
generalized.

5. If necessary, the instructor provides a partial explanation revealing some subset of the hidden results
or processes.

6. The student then incorporates any unknown information about these hidden results or processes and
attempts to complete the explanation, repeating step 4.

Figure 1: General LBUE Algorithm.

LBUE predicts many types of student learning. First, the student has the opportunity
to learn about intermediate results or hidden processes that would assist in completing an
explanation for the current example and for future examples. This permits students to fill in
gaps in their domain models. Second, the students can learn more efficient organizations of
their knowledge by using Explanation-Based Learning techniques to generalize the conditions
under which the given action or solution was appropriate. LBUE can potentially produce a
system more efficient than a standard inductive system and can learn truly new knowledge

unlike standard EBL.

In troubleshooting, as in the general model, learning is triggered when a complete expla-
nation cannot be found for an instructor’s proposed solutions. In diagnosis, these solutions
are statements of hypotheses. The instructor presents an automobile that is malfunction-
ing, and he generates possible hypotheses of the underlying cause. The student or learning
system then attempts to explain why the hypothesis is appropriate. One way to explain
hypotheses is to attempt causal chaining.

Often a student will not have enough information to explain the hypothesis. For example,
a student may not know what a cracked distributor cap can cause. In general, the student’s
model of a domain cannot be expected to be complete and consistent. When important
information is missing, the instructor’s explanation can be useful. LBUE permits three
types of learning in any domain, including diagnosis.

o If the instructor’s partial explanation represents a new causal relation, such as X causes
Y, the partial explanation can be added directly to the causal domain model with high
credibility. For example, when the instructor says that a cracked distributor cap can
allow moisture to collect inside the distributor, that information can be added reliably
to the student’s causal domain model.

e The instructor’s partial explanation may allow bridging a gap to complete a causal
chain, thus enabling the student to add a collapsed causal chain as a new association
in the causal knowledge, as in EBL. In our example, once the student has been told
the partial explanation, she can then realize that moisture in the distributor cap could

22

interfere with the electricity, causing a lack of electricity reaching the spark plug, which,
in turn, would prevent the spark plug from firing. A complete explanation has been

formed.
e A final type of learning can occur when the explanation does not complete a chain. In

this situation, the student may still infer a causal relationship that fills a gap in the
explanation. For example, if the student did not know that moisture in the distributor
cap could interfere with the electricity, then there would still be a gap in the student’s
explanation. This might be able to be filled, depending on available general knowledge.

LBUE, as applied to learning automobile diagnosis from examples, uses a very straight-
forward learning algorithm. An outline of this algorithm as implemented in EDSEL1 and
EDSEL2 is shown in Figure 2. This algorithm describes the details of the general LBUE
process (Figure 1) from a diagnostic student’s point of view.

1. When the symptom is presented, attempt to causally chain backward toward possible root causes,
trying to determine what could cause the symptom.

2. As each hypothesis is presented, attempt to causally chain forward toward possible effects, trying to
determine what the hypothesized state could cause.

3. If the symptom causal chain meets a hypothesis causal chain, then the EBL generalization is added
to the causal domain model.

4. If the causal chains do not meet,

(a) Causal chain backwards from the instructor’s partial causal explanation toward the hypotheses.

(b; Chain forward from that partial explanation toward the symptom.

(¢) If both directions can be linked, then the most general relationship (cause hypothesis symptom)
can be learned.

(d) If a gap still exists. then try to infer the missing causal links.

5. If necessary, add the partial causal explanation to the causal domain model.

Figure 2: LBUE Algorithm Specialized for Diagnosis.

After this learning, the causal domain model (mental model) is more capable of complet-
ing an explanation, and diagnosis is more efficient and more powerful for the same or similar
problems. In general, less knowledgeable students will have bigger gaps to fill, such that
many plausible inferences are possible. Large inferential leaps can be refined and corrected
by further diagnostic episodes. The LBUE process is able to augment and correct a causal
model, and, as with people, what is learned is strongly influenced by what is already known.

4.3 Case-Based Reasoning

Of particular import in this model of a student is case-based reasoning. In case-based
reasoning, inferences are made based on particular experiences rather than based on general
knowledge or first principles. Old cases that are remembered in the course of reasoning serve

23

several purposes: proposing shortcuts to solutions and warning the reasoner of the potential
for problems. Case-based reasoning allows a reasoner to make inferences by association
rather than by tracing through a complex causal model. Of particular interest in case-based
reasoning is how to index into a case memory to choose appropriate cases. Our work has led
us to hypothesize five ways in which troubleshooting cases are indexed in memory.

¢ Symptoms, along with other features, are used to recall cases that can predict faults
(hypotheses)

o Hypotheses, along with other features, are used to recall cases that can suggest tests
to be done.

o Tests and their results, along with other features, are used to recall cases that can
suggest hypotheses or interpretations.

o Faults, along with other features, are used to recall cases that can suggest repairs.

e Symptoms, along with other features, are used to recall cases that can suggest repairs
when faults cannot be tracked down.

“Other features”, in each of the descriptions above, are particular to each individual case
and are the features that in addition to the one of the type specified are predictive in the
right way. Some symptoms, along with a make and year of car, for example, are predictive
of a particular fault. The same symptom, along with some other feature, such as who fixed
the car last, might predict a different fault.

Also of interest in case-based reasoning is the representation of cases. We have discovered
that a representation that breaks cases into case pieces is most advantageous. Case pieces
represent hypothesis-test-result triples and sequences, and are stored in memory indexed off
of the engine part or system that is hypothesized to be broken. Case pieces include any
information needed to explain why the hypothesis was made, the hypothesis itself, the test
that was done, the result, and any information that can help explain the result. Pieces of
the same case point to each other in such a way that a whole case can be reconstructed from
the pieces. Cases are used for a variety of problem solving tasks. The description of index
types above gives an idea of the inferences they can help with.

Appendix E holds papers about case representation.

4.4 Memory Organization and Representation

If case-based reasoning and explicit reasoning about a causal model are both used in solv-
ing problems, then another issue of importance is the integration of cases and knowledge
about devices and cases. We have spent considerable time on developing representations
of mechanical devices and organizing those representations in a memory. There are several
principles we base our representations and organization on:

24

e Memory must represent both general knowledge about mental models and specific
knowledge about particular cases. Both should be in the same form and accessible by
the same retrieval algorithms.

o Memory organization must integrate general knowledge and specifics of cases in a
natural way. That is, if a case was used to build or elaborate some part of the model,
it should be associated with that part of the model. Conversely, if a case illustrates or
specializes some part of the model, it should be associated with that part of the model.

e Models of normal function and models of malfunction should be appropriately inte-
grated. We do it by associating both with the part or system they go with.

e Since people can make inferences based on either the general model or specific cases,
inference mechanisms should be able to work on both.

¢ The mental model must represent normal function, malfunction, physical struccture,
flow, and causality. People use all of these in troubleshooting.

o In representing cases (experience), the order in which hypotheses were made is impor-
tant and should be explicitly represented.

e On the other hand, access to cases suggests that they should be represented and stored
in pieces with connection between the pieces and separate indexes to each piece. Pieces
seem to be associated with hypotheses made during troubleshooting.

These principles result in memory orgnaization that is hierarchical in several ways. First,
a partonomic hierarchy reflects the system/subsystem aspects of the model. Second, a
generalization/specialization hierarchy reflects the progression from general knowledge (a
carborator has the following parts) to more specific knowledge (carborators in Nissan Stanzas
have an additional part called an x with the following features) to very specific knowledge
(the carborator in Kolodner’s Nissan Stanza won’t hold its idle setting. As a result, gum
has been put around the idle control to hold it in place.) Generalization/specialization
hierarchies are used to represent both general knowledge and experience with both normally
functioning and malfunctioning cars.

Each part represented in memory has topological relations specified (near what, connected
to what), input and output, and function. Each has a set of inferences describing it in
normal functioning mode and a set describing its various malfunctions (how to recognize
them, results of malfunction, how to test for it, how to fix it). These form the normal
function and malfunction model of the part.

Cases are integrated with general knowledge by breaking them into pieces based on the
hypotheses made about malfunctions. Each hypothesis is associated with a malfunctioning
part of the car, and each case piece lives in a generalization/specialization hierarchy associ-
ated with the part its hypothesis is about. Case pieces hold connections to other case pieces
they come before or after or predict.

We also need to designate what access functions look like. How are these different kinds
of knowledge retrieved? We want retrieval processes to model people’s processes. This is
the way we can predict what learning situations are effective, what people will recall in any
situation, and the kinds of external memory organizations that will be effective. Several
principles for memory retrieval are:

e More specific information should take preference over less specific upon retrieval.

e The same procedure should recall both specific and general knowledge, hence both
should be organized and indexed the same way.

e Retrieval should not slow down with the addition of information to the memory.

¢ Update processes should access memory as retrieval processes do, putting new infor-
mation in correct places.

We have worked on two approaches to this problem — one in the context of CELIA, the
other in a separate memory model. CELIA’s model is presented in papers in Appendix
E. CORA is the separate memory model, and it begins to implement a model with the
constraints above. Appendix F holds papers with details about CORA. CORA is novel
in the realm of AI memory models in being based on conditional probabilities. Cases in
CORA are stored overlapped with other cases in such a way as to allow case reconstruction.
This overlapping storage is achieved by maintaining conditional probabilities between case
pieces. In a sense, the memory does not store cases individually, but rather stores the
information necessary to rebuild the case given a partial description of its features. Cases
are retrieved from CORA’s memory by incrementally adding the most probable correlates
to the retrieval cue. CORA is capable of rapidly retrieving the best-match case or cases
from a very large case store. As well, CORA automatically generates generalizations by
similarity-based learning, and upon retrieval of a case that is a lot like several others, it will
recall the generalizations it made, returning a composite rather than an exact case. CORA
uses its conditional probabilities to index on unusual features or attributes.

The motivation for CORA was based on results from the study of human memory. Human
memory for categories and language has often been described as representing correlational
feature structure (Rosch, 1978; Medin & Schaffer, 1983; Billman, Heit, & Dorfman, 1987),
and this structure may provide a basis for the initial learning of these types of information
(Billman, Heit, & Dorfman, 1987). Anderson (1988) further argues that a Bayesian analysis
is the most appropriate way to describe and explain memory retrieval, skill learning, and the
representation of category structure. The application of these ideas to a machine memory
constitutes an important contribution to artificial intelligence in the fields of conceptual clus-
tering and representation, knowledge acquisition in general, and knowledge access from large
databases. Conditional probabilities have been used in several machine learning projects,
most notably those of Schlimmer (1987) and Fisher (1987).

26

Appendix A

GIT-1CS-89/02
Problem Solving and Learning in a
Natural Task Domain

Juliana S. Lancaster*
Janet L. Kolodner

School of Information and Computer Science
Georgia Institute of Technology
Atlanta, Georgia 30332

*BDM Corporation
1300 N. 17th St., Suite 950
Arlington, VA 22209

November, 1988

This research was supported in part by the Army Research Institute for the Behavioral Sciences
under Contract No. MD A-903-86-C-173. Correspondence should be addressed to Janet Ko-
lodner, School of Information and Computer Science, Georgia Institute of Technology, Atlanta,

GA 30332.

Problem Solving and Learning in a Natural
Task Domain*

Juliana Lancaster
BDM Corporation
1300 N. 17th St., Suite 950
Arlington, VA 22209

Janet L. Kolodner
School of Information and Computer Science
Georgia Institute of Technology
Atlanta, GA 30332

November 16, 1988

Abstract

Problem solving is known to vary in some predictable ways as a function
of experience. This work has sought to uncover the particular processes by
which problem solving knowledge is acquired from experience and integrated
with already-known knowledge to be used in later problem solving. Protocol
collection and analysis have allowed us to uncover some of the problem solving
and learning processes used by novice and more experienced mechanics, as well
as the knowledge they have available. Work on representing that knowledge in
a way that can support the problem solving processes we observed allowed us
to begin extending our understanding of these processes. This report describes
a series of protocol experiments and their analysis, and some initial attempts
at representing the knowledge used by the subject mechanics.

*This research was supported in part by the Army Research Institute for the Behavioral Sci-
ences under Contract No. MDA-903-86-C-173. Thanks to Phyllis Koton, Joel Martin, and Michael
Redmond for commenting on earlier drafts of the paper.

1 Introduction

In many domains, it is obvious that expertise is a function more of experience
than of formal training or success in passing examinations. Nevertheless, research
on problem solving and on the nature of expertise has often examined variables
unrelated to the individual experiences of the learner, or even the course of the
learner’s study. In earlier work on problem solving for example, the variable of
interest was most often the number of steps required to complete a problem or
the number of correctly solved problems within a set. As research turned to more
and more complex domains, the differences between novices and experts began
to reflect interesting qualitative shifts in the nature of problem solving and in the
knowledge used in solving problems. As a consequence, researchers began to concern
themselves with characterizing those differences and shifts. Much has been learned
over the past twenty years about differences between novices and experts (e.g.,
Bhaskar & Simon, 1977; Chi, Glaser & Rees, 1982; Glaser, 1985), but to date little
has been said about the role(s) of specific experiences in the process of becoming
an expert.

This work has been conducted to enhance our understanding of the roles that
specific experiences and interactions can have on a novice’s changing knowledge and
problem solving behavior. In order to consider this issue, we first examined three
characteristics of the knowledge held by problem solvers: availablity of knowledge
before solving any problems; available knowledge for the solution or later problems;
and knowledge organization. We then explored the learning processes used at dif-
ferent levels of expertise in order to identify the kinds of learning aids that might
be provided for students, and identified the circumstances under which particular
experiences are memorable.

The task domain selected was auto mechanics. This domain is particularly
appropriate for several reasons. It is highly complex in that the automobile engine
consists of several interacting systems that combine to produce the desired effect
(motion of the car). Failures in one component or system may be manifested purely
within that system, or may have compound effects that reveal themselves in a
malfunction within another system. These observable symptoms are used to locate
the failure, but are not generally interpretable by the amateur. The domain is
knowledge-rich and the depth of knowledge and ability to use it are both important
" in making a good diagnosis. Schools teach about cars in general, but since there
are so many different kinds of cars, each having its own peculiarities, textbooks
and schools cannot teach everything. Diagnosing a particular car may depend as
much on the age and style of engine as on the given symptoms. In addition, the
problem description given by the owner to the mechanic is frequently incomplete

and/or inaccurate. Thus experience with many different types of cars and problems
is essential to gaining expertise.

2 Methods

The results reported here are based on an analysis of two sets of problem solving
protocols collected in separate studies. In both, student mechanics were observed at
weekly intervals while diagnosing car failures. Each failure was introduced deliber-
ately into the car and each problem was caused by only one failed part. Think-aloud
protocols were collected while the students worked and were transcribed and coded
for later analysis. During the first study, the instructor demonstrated the correct
or optimum troubleshooting sequence for diagnosis of each failure after all subjects
were finished. Thus, each student had an opportunity to obtain feedback on his
performance and an explanation of the car’s problem whether or not he had diag-
nosed it correctly. In the second study, the problems were specifically sequenced so
that we could see the effects of earlier learning on later problem solving. In this set,
the instructor’s demonstrations were omitted.

Analysis of the data derived from these observations focused on the knowledge
and strategies used by students at different levels of training, how their knowledge
was organized, and how their knowledge and strategies changed with experience.
We expected that the more experienced student would solve more problems and
would give evidence of having a more organized knowledge base than the less ex-
perienced students. In addition, we expected that individuals would show evidence
over-the series of problems of acquiring new diagnostic skills and new knowledge
and connections within their knowledge. Protocols from the second set were also
analyzed for evidence of case-based reasoning.

2.1 Subjects

The subjects were student volunteers at a post secondary technical school. The
technical program is a two-year, eight-quarter program. During much of the second
year, the students work in a shop setting within the school. Cars belonging to school
personnel and friends of the students and instructors are diagnosed and repaired
by students. In addition, the school owns several cars that can be used in teaching
students to teach about specific problems.

Each of the student volunteers was at a different point in the program. The
novice student in Set 1 was in his first quarter of the program and had no prior
training or experience. Intermediate students were at the beginning of the second

year in the program and had no relevant work experience. The advanced students
were near the end of the second year. One advanced student, who participated in
both sets, also held a part-time job as a mechanic outside of school. Each student
worked on at least four of six problems in the problem set he participated in.

2.2 Procedure

The procedure used for protocol collection was the same for both problem sets. In
each session, the student was led to the car and, with the experimenter posing as
a customer, told that the car was exhibiting a particular symptom. The student
was then allowed to perform any tests desired on the car and its engine, with the
exception of a driving road test, prohibited primarily by the symptoms presented by
the car. The student was instructed to think aloud as he worked to find the failed
component in the car. His comments were tape recorded by the experimenter, who
also served as an assistant to the student when necessary. Subjects were observed
once a week while diagnosing an actual problem in a car.

The problems used were selected by an instructor in the program in consultation
with the experimenter. The problems used in Set 1 and the information given as
the customer’s complaint are described in Table 1. Comparable information for the
problems in Set 2 is given in Table 2. Each fault was introduced into a car by the
instructor or by a student not in the study under the direction of the instructor.
The cars used were all owned by the school with one exception: For one problem in
the first set (1B), we used a car brought in by a school official that had symptoms
we had been presented to the students in the previous week. In every case, a
single complaint was given and a single fault could be traced to account for the
complaint. Students were told to track down the fault, but not to fix it unless
repair was necessary to confirm the diagnosis.

2.3 Coding

Both sets of protocols were coded the same way. After all protocols were tran-
scribed, each statement was coded into one of six categories, shown in Table 3.
Statements coded as hypotheses were those in which a specific system or compo-
" nent was first named as a possible source of the failure or in which the system or
component was accepted or rejected as the source of the failure. Hypotheses were
numbered in order of appearance and, each time one was mentioned, its status was
noted. Its status could be open, accepted, confirmed, or rejected. Rules were state-
ments giving known, constant information about an engine or about the process of
diagnosis. Statements coded as information gathering were generally descriptions

Table 1: Problems in Set 1

PROBLEM #] CAUSE (fault)

SYMPTOM (complaint)

1A blockage in gas line cranks but will not start
1B bad cell in battery — will not hold charge cranks slowly when starting
1C bad connection behind fuse panel and fuel | cranks but will not start
pump fuse
1D loose ground wires from Electronic Control | cranks but will not start
Module (computer)
1E open tack circuit cranks but will not start
1F poorly adjusted timing detonation on acceleration
Table 2: Problems in Set 2
[PROBLEM #] CAUSE l SYMPTOM_| # SOLVING/é_TTEMPTIN_iI
2A bad plug wire | will not start 3/3
2B closed plug gap | will not start 4/4
2C rocker arm gone | will not start 2/4
2D restricted fuel | engine surges 0/2
2E restricted fuel | engine surges 2/4
2F vacuum line hole | engine surges 0/3

Table 3: Coding Categories for Protocols

CATEGORY ADDITIONAL SPECIFICA- | EXAMPLES

TIONS
Hypotheses Number and Status Could be starved for gas (N-P1)
It could be, could be the starter {N-
P2)
Rules Topic(Failure, normal func- | Fuel Pump should come on for 3 sec-

tioning, or troubleshooting) onds (I-P4)

First of all, I have to locate the con-
nector to the back of the fuel pump

(A-P3)
Information Source of information ob- | Before I look in the book, ’'m going to
Gathering tained check the fuse (A-P3)
Observation Topic (hypothesis(number) or | What we don’t have is fuel to the
complaint) throttle body (A-P3)
I don’t believe I hear it running (A-
P3)
Restatements | Topic (complaint or summary | to:rephrase that-the throttle body is
of observations) not injecting fuel (A-P3)

of the actions being taken by the subject at the time. Such actions could elicit or
obtain information from the customer, from a book, or via a procedure or test ap-
plied to the engine. Observations were statements giving the information obtained
from the action taken. Restatements were repetitions of previously stated or col-
lected information rather than new information. Each statement falling into one of
the last three categories was identified with a specific hypothesis by its number if
possible. All other statements were uncodable and were marked as such.

2.4 Analysis

The coded protocols were then analyzed for several different things: what subjects at
~ different levels of expertise knew and how their knowledge was organized; how their
knowledge changed (i.e., what they learned) as they progressed; and the processes
by which they learned.

To analyze what each student knew and how his knowledge was organized, we
summarized the coded data for each problem in two ways. First, each coding from
a protocol was listed down a vertical column. From this information, we counted

the number of different hypotheses used by a student for a given problem and the
number of correct diagnoses made by each student. These columns were then placed
side by side, and any use of information novel to the student in one problem that
was used easily in a later problem was marked by connecting the two codings. This
information was useful as a rough measure of whether or not the students were
learning from the problems. In the second summarization, each hypothesis, action,
or conclusion of a student on a given problem was noted in a short verbal form
(e.g., HYP: Bad fuel pump; check vacuum lines for leaks; check carb for dirt or gas;
manipulate throttle by hand). Alongside each, we noted the justification or rule
used to support the action, hypothesis or conclusion. When all protocols had -een
summarized, we composed models of the engine and of diagnostic possibilities and
procedures held by each student by collecting all statements about the normal state
of the engine into the engine model, all hypotheses into the symptom-fault model,
and all procedures into a procedure model. Using the information, we compared
both the amount and nature of the models held by each student. The results of
these comparisons are discussed in Section 4.

In order to analyze the learning that each of our subjects accomplished, and the
methods by which they learned, we chose two sequential protocols for each student
after protocols were coded. The two protocols were selected to have the same
initial symptom, but different failures. For each of these protocols, a description of
the knowledge used and sought by the student during diagnosis was compiled. The
descriptions of the two protocols were then compared and differences were noted. Of
p- rticular interest were occasions in which the student appeared to use knowledge

jolving the second problem that he did not have in solving the first problem.
(..anges in the knowledge used showed us what students learned between solving
the two cases. We then examined the protocols and the instructor’s explanation
of how to solve the first problem to see if we could identify how these items were
learned. Sometimes this was obvious — a student had asked a question previously
or the instructor had presented the relevant material in a previous explanation.
Sometimes it was not obvious — what was learned could have been presented in
class between the two’ exercises. We focused on those learned items for which we
could identify the situation in which the new concepts were learned.

3 General capabilities of novices and experts

As expected, the ability of the students to correctly diagnose the problems changed
substantially between the novice level and the intermediate and advanced levels.
The diagnoses given by each subject and the number of hypotheses considered are
shown in Table 4 for the first set of problems. The novice correctly diagnosed only

Table 4: Final Diagnoses and Number of Hypotheses Considered by Each Subject

| PROBLEM | NOVICE | INTERMEDIATE | ADVANCED |
1A not getting fuel(4) | clogged fuel line(3)
1B dead battery cell(5) starter(4) dead battery cell(6)
1C fuel pump relay(5) | fuel pump fuse(5)
1D fuel pump(3) no diagnosis(6) injector solenoid(9)
1E no diagnosis(0) open tach circuit(9)
1F bad timing(10) bad timing(2)

one of four problems attempted, while the intermediate student correctly diagnosed
three of six and the advanced student three of four. In addition, the number of
hypotheses considered increased with expertise. The novice generated a mean of
3.0 hypotheses per problem and the intermediate and advanced students generated
6.8 and 5.0 hypotheses per problem respectively.

4 What was known; what was learned

In general, the diagnostic behavior we saw was similar to that reported by other
researchers (Hunt, 1981; Rasmussen, 1978; 1979; Rasmussen & Jensen, 1974). Stu-
dents generated one or more possible hypotheses for the failure immediately after
observing the symptom(s). These hypotheses were then tested in a fairly systematic
(albeit sometimes idiosyncratic) way either by observation of the inputs to and out-
puts from specific components and systems or by performance of specific diagnostic
tests. In successful cases, a single diagnosis ultimately was given, accompanied by
an explanation of how or why that failure would generate the observed symptom(s).

4.1 Knowledge Structures and Organization

We interpret this process as being indicative of an interaction between two types of
knowledge structures. The first, a causal model of the car’s engine, contains knowl-
edge about individual components and their inputs, outputs, and normal behavior;
relates components within a system to one another; and describes the relationships
and connections between systems. It is used to evaluate hypotheses in light of the
evidence obtained from the failed engine and to lead the mechanic through the en-
gine to the source of the problem in a systematic way. The causal model is generally
quite large, and the second type of knowledge structure, symptom-fault sets, is used

to index into the causal model at appropriate places. Symptom-fault sets represent
the relationships between particular symptoms or sets of symptoms and failures.
For example, given the symptom ”the car cranks but will not start”, the symptom-
fault sets will identify three systems as possible locations for the failure: the fuel
system, the air intake system, and the ignition system. Within each of these sys-
tems, additional symptom-fault sets will identify individual components that may
cause the symptom(s). For the fuel system, these would be a failed fuel pump, an
empty gas tank, or a blocked fuel line. For the ignition system, these would be a
bad distributor, bad spark plug wires, or bad spark plugs. These symptom-fault
sets are used to derive initial hypotheses, directing the mechanic to look at only
appropriate places in the causal model.

If, in fact, mechanics are using these two types of knowledge structures during
troubleshooting, then we can predict several changes in these structures as a result
of experience, and from those, we can predict the processing differences that would
result from these changes. First, we predict that through experience, a mechanic’s
set of symptom-fault sets increases and that the sets he already knows become more
accurate. As a result of these changes, the mechanic should have better ways to
index into the causal model, leading to more efficient searches for the correct failure.
Second, the causal model should become more filled out with experience, both
through the addition of components and/or systems that were previously unknown
and through the addition of relationships and dependencies between the known
components. The causal model, like symptom-fault sets, should also become more
accurate. As a result of having a better causal model, a mechanic should be better
able to systematically reason about the way the car works, allowing him to find
engine failures more systematically and in more cases.

We did, in fact, see clear differences between students at different levels of expe-
rience reflecting exactly these changes in their knowledge structures. First, we saw
evidence that both the organization and number of symptom-fault sets increased
with experience. The advanced student seemed to know more symptom-fault sets
than the novice, as evidenced by the larger number of hypotheses he was able to
generate for each problem. In addition, the advanced student seemed to organize his
symptom-fault sets differently than the novice, evidenced by the more systematic
procedure he used for generating and testing hypotheses. The advanced student’s
procedure was to zero in on one of the engine’s subsystems and then to consider
which component of that system was faulty, while the novice did not differentiate
between systems and components of systems in diagnosis. While for the novice, all
faults are equal and an hypothesis at the component level was as likely to be selected
as the first to investigate as an hypothesis at the system level, the more advanced
troubleshooter seemed to organize his symptom-fault sets into two categories, each
used for different purposes. One set pointed to faulty subsystems within the car

9

(e.g., fuel system, electrical systems) and was used early in diagnosis to zero in on
the faulty subsystem, while the second set pointed to faulty components of these
systems (e.g., the fuel pump, the battery) and was used to diagnose the problem
within that system. Such a change requires that the mechanic also reorganize his
knowledge about the car’s engine in a more hierarchical way that differentiates be-
tween systems and components of systems. Figure 1 shows a portion of the novice
and advanced student’s organizations of the causal model of the engine.

We also saw evidence that content of the causal model changed with experience.
The causal model of the more advanced students contained not only more knowledge
about individual components, but also more knowledge about the interconnected
nature of the engine’s systems. The behavior of the students during troubleshooting
illustrates these findings. Consider, for example, the behavior of the advanced
student in Problem 1D. His reasoning went as follows:!

The first thing you want to do, which is the easiest thing to do, is look
and see if we have any fuel, because you gotta have fuel, air, and heat...
Don’t have fuel..The first thing I want to do is check the fuse...they’re
OK... hook this jumper lead to the bypass to the fuel pump...the fuel
pump is running... check and see our connection up here to the ener-
gizer...going from the ECM up to the injector is OK...try to energize
this solenoid by hand...check to see if we got any gas...all the lines are
alright...got gas to the throttle body... my diagnosis is the solenoid is
bad because everything else checks out.

The hypotheses generated by this student are in an order that reflects the multi-
level and highly integrated organization of both his causal model and his symptom-
fault sets. He first determined which of three possible systems of the engine was
affected and then investigated its components and others that could impinge on
the behavior of the system under focus. In fact, his primary focus was on the
electronic (or computer controlled) influences on the behavior of the fuel pump
and fuel injectors. This Teasoning showed an awareness (reflected in the student’s
causal model) of the interdependencies between subsystems. His reasoning shows
that he knows that systems (such as the fuel and electronic systems) may intersect
at several points and that an apparently or possibly failed component in one system
may reflect an action, or lack of action in another system.

In contrast, the novice generated relatively few hypotheses for any given prob-
lem. His protocols indicate that this is because he has little knowledge about the
relationships between given symptoms and their causes and also because his causal

1For a full protocol of the session, write to the second author.

10

NOVICE

Level of Abstraction Values
Highest:

Car Engine

Battery Coil Distributor Spark-Plug Gas-Tank Fuel-Pump Carburetor Air-Filter

ADVANCED
Level of Abstraction Values
Highest:
Car Engine
System Level:
Ignition Fuel Air Intake

Component Level:

Battery Coil Distributor Spark-Plug GagTank Fuel-Pump Carburetor Air-Filter

model is inadequate. In solving the same problem the advanced student was working
on above, the novice reasoned:

This problem could be in the fuel system, ignition system...we know it’s
not in the starting system because the car will crank over...One small
drop of fuel...in that bowl...so it’s in the fuel system...the fuel pump’s...
supposed to turn for 10 to 15 seconds...I can’t hear it...It might just be
a bad fuel pump.

We can see little evidence of an integrated hierarchy of levels in his organization
of symptom-fault sets. While his hypotheses were sometimes at the system level
(i.e., fuel system) and sometimes at the component level (i.e., fuel pump is bad),
in only one problem (this one) did he clearly consider first a system and then a
component within that system. More commonly, he generated hypotheses at both
levels and then investigated only specific components. Furthermore, he showed a
similar lack of integration in his causal model. Specifically, he never considered
the possibility that one system could affect the behavior of another. His knowl-
edge appeared to stop at the individual component’s behavior and did not include
the possibility that the actions of another system (the electronic system) could be
affecting the behavior of the component he was considering (the fuel pump).

While the novice knew about many of the components of the car’s engine and
about what their connections were within a single system, he did not know how the
systems and the components in different systems were interrelated. The advanced
student, on the other hand, knew both the connections between components and
the connections between systems. Thus the advanced student had a more integrated
and complete understanding of the car’s engine, while the novice’s understanding
seemed to be highly disjoint.

Figure 2 shows our interpretation of what the novice and advanced students
knew about the fuel pump, for example. Note that the general information about
pumps is available to both the novice and the advanced student in a declarative
form. However, the information that the fuel pump requires an energy source which
is the electrical system of the car is not part of the novice’s representation of the fuel
pump. If asked ”What makes the fuel pump run?”, the novice is able to construct
- the appropriate answer by using the more general information about pumps, but he
does not use this knowledge during problem solving. The same pattern is probably
true of knowledge about systems and components. The novice can undoubtedly
tell an inquirer what system of the engine a particular component resides in, but
he does not maintain this information where it is readily usable during problem
solving.

12

PUMP Source: a container
Substance: a substance in the container
Conduit: a pipe
Destination: a container
Energy-Source: an energy device

NOVICE ADVANCED
FUEL PUMP ISA PUMP FUEL PUMP ISA PUMP
Source: gas tank Source: gas tank
Substance: gasoline Substance: gasoline }
Conduit: hose Conduit: hose
Destination: carburetor Destination: carburetor

Energy-Source: electrical system

Figure 2: Novice and Advanced Student Representations of a Fuel Pump |

We also saw within-subject changes in these knowledge structures over the course
of the experiment. These changes were most evident in the intermediate student.
Two examples will serve to demonstrate changes across problems. In working on
problem three, the intermediate student made a long and protracted search for the
fuel pump relay using both written reference materials and extended visual exam-
ination of the engine. While working on Problem 1D, he was able to immediately
lo- .te and check the same part. This component, and its physical relationship to
others, had been incorporated into the causal model during or following problem
three. Similarly, the symptom-fault sets changed as new information was acquired.
For example, the first hypothesis the intermediate student checked at the compo-
nent level for problem four was the fuel pump fuse, which was the correct diagnosis
for problem three. He made the point as he worked that he was checking this pos-
sibility out first because of the previous case. ("I’m gonna check the fuel pump fuse
first [this time].”)

In addition to seeing changes in the organization and content of the causal model
and symptom-fault sets of the students over the series of problems, we also saw them
developing some additional knowledge structures: sets of diagnostic strategies and
a malfunction model of the engine.

The set of diagnostic strategies stored the mechanic’s tnowledge about which
tests could be used to evaluate which hypotheses and w. ch values for the test
results indicated properly functioning components and which values indicated failed
components or systems. A more complete discussion of the implications of having

13

this knowledge can be found in the next subsection.

The malfunction model of the car was similar to the causal model already dis-
cussed. However, its content reflected the likely behaviors of individual components,
systems, and the entire engine in the context of a variety of known engine fatlures.
This model enabled the advanced student to test his hypotheses directly against the
knowledge of how the system should behave if his hypothesis were correct rather
than needing to always compare the engine’s actual behavior against the working
model of the engine.

4.2 Diagnostic Strategies

In addition to the changes experience makes in knowledge structures and organiza-
tion, we also saw differences in diagnostic style. Diagnostic strategies seemed to be
used differently by subjects at different levels of expertise and evaluation criteria
changed significantly with experience. Some of these changes are due to the devel-
opment of better strategies for testing and confirming hypotheses with experience
while others appear to result from the differences in the knowledge available for
diagnosis as a mechanic gets more experienced.

The change in how the mechanics tested and confirmed hypotheses was strik-
ing. As the example above showed, the novice student was willing to accept an
hypothesis when preliminary evidence could be interpreted as congruent with that
hypothesis and not pursuing the task any further (i.e. ”can’t hear the fuel pump”).
In contrast, the advanced student sought, for each hypothesis, specifically confirm-
ing or disconfirming evidence that was part of a causal explanation. While he was
willing to select an hypothesis to pursue on the basis of preliminary evidence, he
would not accept or reject it without causally based information (e.g., "the fuel
pump’s not running, now we have to find out why”).

The changes in diagnostic strategies that resulted from changes in the knowledge
structures were more apparent in the efficiency of diagnosis. As the causal model
gets filled out, it allows the mechanic to pursue a longer systematic search through
the engine and to evaluate information in more detail and with more concern for
the real effectsof the behavior observed. At the same time, as the number and
complexity of symptom-fault sets increases, long searches become less necessary,
because the mechanic is able to index into his model in more, and more effective,
locations.

These two types of changes in the mechanic’s diagnostic strategies work together
to produce the results we saw. As the mechanic gains experience making correct
and incorrect diagnoses, he gains a sense of what kind and how much information is

14

"enough” to validate his opinions. In addition, as his causal model and symptom-
fault sets become more complete and accurate, he is more able to select appropriate
hypotheses for investigation and to continue invgestigating a problem to the point
that only one hypothesis remains as a possible diagnosis. Consequently, the condi-
tions under which he will accept an hypothesis as a final diagnosis will become more
accurate and the path by which he reaches his diagnosis will become more efficient.

This result is clearly evident in protocols of the novice and advanced students.
When the novice’s working hypothesis was a that a particular component was faulty,
he either accepted it or rejected it as the cause of the symptom. He never investi-
gated other effects on or inputs to that component. For example, in Problem 1B,
the failure was a dead battery cell which caused the car to crank very slowly. The
novice based his diagnosis on the following information:

First of all, we’ll have to check this battery...it could be the starter... it
could be the alternator...it could be a voltage loss...could be a dead cell
in the battery...we’ve only got 10 volts in the battery—each battery cell
is 2 volts and there’s 6 cells in the battery, so dead battery cell.

Here we see the novice generating both system and component level hypotheses,
but because his knowledge is not hierarchically organized, not pursuing them in that
order. Rather, he looks first at the battery charge. Because it is low, he accepts the
hypothesis of a dead cell. His diagnostic strategy does not require that he consider
any hypotheses relating to why the battery might be low, such as a malfunction in
another system.

In contrast, the advanced student generally collected more information before
giving a diagnosis. If possible, he confirmed his diagnosis by visually finding the
condition that created the symptom (i.e., the disabled fuse panel connection in
Problem 1C). When that was not possible, he justified his diagnosis within his
causal model. For example, in Problem 1B, the failure could not be confirmed
by visual evidence. Imnstead, the advanced student reaches his diagnosis with the
following information:

...check the starter draw...it’s pulling enough down to get the starter to
go alright...We put the battery under load, you can see the amps rising
and it’s charging the battery...So the alternator’s working OK...what I
believe we have is the cell is dead in the battery...Try the test on the
VAT...As you see on the indicator is also showing that it needs charging
for the battery is bad...So what we have here is a battery with a couple
of cells dead, and it’s a sealed battery and you cannot check the specific
gravity with a hydrometer to check and see which one’s dead.

15

He reached and justified his diagnosis by eliminating all other possibilities from
his symptom-fault sets and the causal model. In other words, he tested and verified
normal functioning of both the starting system (”it’s pulling enough down to get
the starter to go alright”) and the charging system (”So the alternator’s working
OK?™). These are the only two systems, other than accessories such as headlights and
radio, that affect the level of charge in the battery. Consequently, according to the
student’s causal model, if the battery’s charge is low and the starting and charging
systems are functioning correctly, the only remaining component in which the failure
can be located is the battery itself. In some types of batteries, this conclusion can be
tested directly, but in the car used in this problem, the battery is sealed. Therefore,
the mechanic must stop with his explanation rather than attempt to verify the
diagnosis any further. In comparison to the novice, he selected his hypotheses more
efficiently, first eliminating competing systems from consideration. In addition, he
based his acceptance of the diagnosis on a full causal explanation rather than on
superficial evidence.

4.3 Summary: What was learned

As reported above, all of the students seemed to possess the same types of knowl-
edge structures: a causal model of the engine, symptom-fault sets linking particular
symptoms to the failures they might indicate, and a collection of troubleshoot-
ing guidelines and procedures. However, the students at various levels of training
differed in both the amount of knowledge they had and the organization of that
knowledge. The novice’s knowledge was unorganized, sparse, and sometimes wrong.
The intermediate students had a better organization on their knowledge (e.g., they
grouped parts in the same system together) and some misconceptions had been
corrected, but it was still incomplete. The advanced students had a much more
complete knowledge base, and many of the misconceptions of the novice and in-
termediate students were corrected. In particular, advanced students knew more
about what failures normally look like than did intermediate students, who knew
more about how the car was supposed to work than about its malfunctions. The
novice knew almost nothing about malfunctions.

The novice student, having learned the rudiments of how a car works in class-
room instruction, was primarily focused on acquiring the necessary organization of
v the causal model to allow systematic tracking through the engine in search of a
failure. For example, diagnosing a fuel system restriction in the earlier problem,
the novice moved directly from the symptom (car cranks but will not start) to the
hypothesis that it was not getting enough fuel and concluded that the fuel line
was restricted. In a later case with the same symptom, the novice student instead
showed that he had subsumed the fuel restriction hypothesis under a more global

16

hypothesis of fuel system failure. He first checked the end point of the fuel sys-
tem for evidence of failure and then began checking components within the system.
Thus he had modified his knowledge base in an important way between cases. He
had collected the fuel system components into a system, allowing him to consider
the system as a whole as his first hypothesized failure source. As a consequence, his
trouble-shooting behavior became more systematic as he only considered specific
components of a system if the system as a whole was shown to be the source of the
failure. This type of learning can be termed knowledge reorganization.

The novice also improved his problem solving skills. In solving Problem 1A, he
did not take action to confirm his diagnosis. Rather he was content to accept the
hypothesis on the basis of its being a possible failure matched to the symptom. After
attempting to solve the problem himself, he listened to the instructor’s explanation
of how to diagnose the a car’s problem. The instructor, as part of his explanation,
showed that it is necessary to confirm any hypotheses that are made. In the second
case he solved, the novice had learned that confirming hypotheses is a necessary
component of problem solving. He was thus also refining his problem solving skills.

In contrast, the intermediate students, having established the basic hierarchical
organization of his causal model and symptom-fault sets, were primarily engaged in
adding new information to his knowledge bases. Specifically, they showed evidence
of adding to the faults associated with a given symptom in their symptom fault sets,
learning new procedures for diagnosis, and identifying the locations and functions of
new components. For example, on an early problem, an intermediate student made
a protracted search for the fuel pump relay. On a later case, he was able to locate and
test the relay at the appropriate time with ease. Thus, we see that he had learned
not only its location but also how it was connected within the fuel system. Similarly,
he employed techniques on a later problem that he had apparently not known when
solving an earlier problem, leading to more efficient testing of hypotheses and an
increased likelihood of getting correct, useful information from his testing.

Advanced students engaged in yet another type of learning that we have termed
refinement. They already knew most of the information needed to successfully solve
every problem presented. The changes in their knowlege between cases reflected pri-
marily a reordering of faults in the symptom-faults sets to reflect new probablilties
of occurrence. In other words, after solving a case in which the correct hypothesis
was one he considered late in his troubleshooting procedures, advanced students
returned to that hypothesis earlier in the sequence on the later problem. None
showed notable changes in the overall organization or content of their knowledge
between problems.

In addition, the advanced students seemed to have an additional model avail-
able to them that the intermediate and novice students were missing: a model of a

17

malfunctioning car. Both the novice and intermediate students seemed to diagnose
faults by first zeroing in on a system that might be faulty and then checking the
behavior of the car against the expected behavior of a working car. What differ-
entiated the novice’s behavior from that of the intermediate students was that the
novice might focus on a particular part, while the intermediate students focused on
a system. The more advanced students (and the instructor), however, seemed to
know what to expect in a malfunctioning car. In other words, they not only had
a working model of the car, but they also had a malfunction model of the car. We
can see this in the behavior of the students when the testing equipment was faulty
(Problem 1B). The advanced student was the only one of the students who worked
on this problem who could recognize that the readings he was getting from the test
equipment were faulty. The intermediate student who worked on this problem was
unable to differentiate a bad reading on test equipment from a faulty car.

5 Learning Processes

Most researchers studying learning have investigated unsupervised learning or learn-
ing where the teacher gives an example but no explanations. However, our observa-
tions show that much of the learning that goes on early in problem solving depends
on a teacher to give an explanation of the procedures for solving a problem and
the knowledge needed to solve it. The causal model describing how a car func-
tions properly, the one describing what malfunctions look like, associations between
symptoms and faults, and the problem solving procedures the instructor finds useful
motivate an instructor’s explanations.

Early in learning, students don’t know enough to be able to learn exclusively
from their own problem solving experiences. For example, the novice who tracks
down the error to the fuel pump when it is the fuel pump relay that is faulty (i.e.,
the fuel pump’s imputs are causing it to malfunction, not the pump itself) can
learn only if he is given extensive opportunity to attempt to fix the problem or if a
teacher intervenes to show him what he was doing wrong. And, when the student
is a rank novice, the experience of trying to fix it himself may be so overwhelming
that, in the worst case, nothing is learned, while in the best case, learning takes
a long time. It might take several attempts, for example, trying to put in a new
- fuel pump before the student will start thinking that something else is the matter,
and at that point, there are so many things that could have gone wrong during his
previous attempts (e.g., the new fuel pump may be faulty, he may have connected
it up wrong in a whole range of different ways) that he may only be able to track
down the problem if he is lucky in his initial guesses.

18

Nor did our intermediate student seem capable of learning without supervision.
While he didn’t need help with simple diagnostic procedures, he was unable to
differentiate between instrument readings produced by faulty parts and instrument
readings produced by faulty instruments. In other words, his missing knowledge
about what faults look like required that an instructor intervene to instruct him on
that subject.

Not only did students need to know how things work (i.e., have a nearly complete
working model) to learn in a completely unsupervised setting, but they also need
to know how things can go wrong and what things are in the normal realm of
possibility.The advanced student, who was by no means an expert, was able to do
quite a bit more learning by himself because he knew both of these things. He,
however, also needed help from time to time when the knowledge he needed to
solve a problem by himself was missing or faulty.

Several learning processes were identified by examining the protocols:

Learning by understanding explanations: After the students had diag-
nosed each problem, the instructor demonstrated the correct, or optimal, diagnostic
path for the problem. In doing so, he enumerated both the reasons for considering
each hypothesis and the diagnostic and test procedures he was using. The stu-
dents attempted to modify their knowledge to match the instructor’s wherever his
procedures, hypotheses, or explanations differed from theirs. We have termed this
process learning by understanding ezplanatiors (Redmond & Martin, 1988, Martin
& Redmond, 1988). It isa comb’ ation oflea 1g by observing an expert (Mitc™=ll,
et al., 1985) and learning by b ; told. In . :ning by understanding, the lea. >r
has an opportunity to observe s..other person (in this study, the instructor) solving
the same case while providing an ongoing explanation of the knowledge and pro-
cesses used. The learner notices those points at which the instructor’s knowledge
differs from his own and modifies his knowledge to bring it into agreement with the
instructor’s. There are a variety of things that can be learned by this method: new
organizational structures, as when the novice collected the fuel system components
into a system; new dia'gnostic strategies, as when the novice learned to test system
endpoints or when the intermediate student learned how to use trouble trees; new
causal connections in the causal model; new test procedures; and refinements of any
of these things.

A more complete explanation of this process can be found in (Redmond &
Martin, 1988) or (Martin & Redmond, 1988). In zhort, a student learning by
this method attempts to explain each of th- hings the teacher is doing, and then
uses the teacher’s additional comments anu explanations to bridge the gaps in
his understanding. Thus, if the teacher proposes a particular hypothesis given
a particular set of symptoms, the student (internally) attempts to explain why

19

that is a good hypothesis. The student may not know why a particular hypothesis
is appropriate, but the teacher’s explanation allows him to fill in the gaps in his
attempted explanation. Without the teacher’s explanations, the best the student
can do is to draw associations.?

Active gap filling: While engaged in diagnosis, a student would sometimes
realize that he did not know a specific piece of knowledge about the behavior of a
component, or the connections between a component and the rest of the engine that
was needed to solve the current problem. For example, his diagnostic procedures
might have told him that he needed to check the input to some component, but he
might not have known what the input source was. To find the missing knowledge,
he would consult an outside reference source, such as a book or a more experienced
individual. The information thus obtained was then incorporated into his knowledge
base and was available during later diagnostic sessions. This is the process by which
the intermediate student learned the location of and connections to the fuel pump
relay. While he knew that he needed to find the fuel pump relay, he was unfamiliar
with the particular car he was diagnosing. He knew that manuals provided this
kind of information and went to the manual to find out. He went directly to the
appropriate schematic in the manual and then spent considerable time using that
schematic as a map of the engine and eventually finding the part he was looking
for. In other words, he used an outside source (in this case, the manual) to find out
exactly the specific piece of information he was missing.

We have termed this learning process active gap filling in recognition of the
intentional nature of the learning. To engage in active gap filling, the individual
must have enough knowledge about the system, enough problem solving knowledge
to know what he ought to be doing, and an adequate organizational structure to
allow him to recognize where the gaps in his knowledge might be, or at least to
realize when an apparent dead end in his diagnosis might be the result of a lack of
easily obtained information rather than something more extensive. Possibly because
of this requirement for a fairly complete and well organized knowledge base, active
gap filling was primarily used by the intermediate and advanced students as a
learning tool. Our protdcols show that knowledge learned through active gap filling
is remembered and available for use in later problem solving.

Learning from interpreting feedback: When a diagnostic procedure was
 not yielding the results the student expected, or when he could not interpret the

2This process may remind people of Mitchell et al’s (1985) learning by observing an expert,
built into the LEAP system. Learning by understanding explanations assumes that the learner
has incomplete knowledge and that the task of the learner is to augment its knowledge. LEAP’s
method, as well as other methods employing EBL and EBG (DeJong & Mooney, 1986, Mitchell, et
al, 1986), assume that the learner has complete knowledge, and allow the learner to better package
that knowledge.

20

results from a test, students had to ask for help. In essence, learning from interpret-
ing feedback is a combination of active gap filling and learning by understanding
explanations. As in learning by active gap filling the student is aware of a gap in
his knowledge. He may not, however, know what that gap is. And, while active gap
filling is usually a process of finding out about some feature of an object, learning by
interpreting feedback focuses on procedures: in particular, “what went wrong” with
a particular procedure. Learning by interpreting feedback can result in correcting
a faulty causal model, but more often involves correcting and refining knowledge
about how to do things. This process is similar to learning by understanding expla-
nations, since the instructor may provide a causal explanation of some phenomenon
or offer :dvice about carrying out procedures. It is a more active and goal-directed
process, however, initiated by some complication the student is experiencing while
solving a problem.

Learning by interpreting feedback is invoked when the student cannot interpret
the unexpected results of his problem solving. The process of explaining those re-
sults can be done by the student or by asking the instructor. When an intermediate
student found that he was getting test results that he could not interpret he went to
the instructor for help. On the same problem, the advanced student figured out for
himself that the test equipment was faulty, and was able to learn on his own which
ranges of test results predicted faulty equipment. The advanced student could do
this, while the intermediate one could not, because he had knowledge telling him
what things look like when they malfunction. This experience told him what mal-
function of a particular instrument looks like. The intermediate student, on the
other hand, did not know enough to hypothesize by himself that the test equipment
might be faulty. On another occasion, however, the advanced student needed the
instructor to provide an explanation to him. He was trying to energize the fuel
pump from the battery using a test light to connect them together. He could not
get the fuel pump to go on. He, like the intermediate student in the previous exam-
ple, knew what the results should look like (in this case, he thought the fuel pump
should go on) but did not know why the results he was getting were different. He
asked the instructor what he was doing wrong. The instructor told him that he
needed to use a lead (a wire with no bulb attached) to energize the fuel pump, since
with a light attached, the bulb consumes the power from the energy before it gets
to the pump. In this case, the advanced student’s causal model of electricity was
faulty.

Abstraction: Another learning process that was noted was abstraction. It
seemed that any new information acquired by a student between problems was in-
corporated into the knowledge base at several different levels. We can see this most
clearly in the novice student’s behavior. Recall that in one problem, he tracked
the failure to the fuel pump but did not examine the system further to distinguish

21

whether the problem was in the fuel pump or in the input to the fuel pump. The in-
structor followed that session with an explanation of how to diagnose the fuel pump
problem. In his explanation, he stated that the endpoints of the fuel system had
to be checked for evidence of a problem. The student learned this (by understand-
ing the instructor’s explanation) and in the next problem applied it. The student
also apparently learned the abstract principle the instructor was illustrating: that
system endpoints need to be checked for problems when diagnosing any system.
Abstraction is sometimes done spontaneously, as in the example just given, and
is sometimes induced by the instructor during explanation. For example, in one
instance the instructor walked students through an engine they hadn’t seen before,
and stated that parts with a particular function had to be found. He then explained
what those parts look like in general.This abstract knowledge allows the student to
identify the part no matter what type of car he is looking at.

Case-Based Reasoning: A final process that facilitated learned was case-
based reasoning. In case-based reasoning, a previous case that a problem solver is
reminded of provides an answer to a new problem or focuses him on the knowledge
needed to solve the problem (Kolodner & Simpson, 1984, Hammond, 1986). While
in the previous paragraphs, we have referred to learning processes that allow a
problem solver to learn new facts, case-based reasoning is a problem solving method
that allows a problem solver to improve its performance without full understanding
of the facts. Remembering previous cases allows a problem solver to solve a new
problem better than an old one even when the problem solver is missing a causal
explanation of why the previous solution did or did not work. Our hypotheses about
case-based reasoning in experts predict that those cases that are different than what
is expected are the ones that are remembered (Kolodner, 1982, 1983, Kolodner &
Simpson, 1984, Schank, 1982). But novices don’t always know the norms, so they
can’t recognize that something is different.

The data we collected in this study show three situations in which novices stored
cases for later problem solving. First, if a case serves as a strong justification for
doing a procedure, then the case was "kept” and referred to later. The advanced
student, in an early prqblem, spent 45 minutes trying to solve a problem that he
could have solved instantly with visual inspection. In the next problem, he did a
visual inspection immediately, saying “what we want to do is check the wire...like
we did the last time”.

Second, cases were maintained in memory if they served as an example of a
particularly complex or unusual situation. This includes, among other things, cases
where a set of symptoms predict a highly unusual fault and cases where some set
of symptoms predict a fairly commonplace fault that is hard to diagnose. Both
students who solved problem 2C (one intermediate and one advanced), in which
a rocker arm had been removed, for example, were able to do it on the basis of

22

remembering a previous case in which a rocker arm had been broken. A broken
rocker arm is a highly unusual problem. In almost all cases, rocker arms outlive
the cars they are in. The other students, who had never seen such a problem, were
unable to solve the problem (one intermediate and one novice). These two students
were able to determine that none of the possible common causes of the symptoms
were responsible for the failure of the car, but they were not able to pursue their
investigations beyond that point. The two successful students were reminded (based
on the particular sound of the car) early in their diagnosis of a car they had worked
with in the previous quarter that had the same problem. This reminding led both of
them to try the diagnostic procedures that would lead them to the correct diagnosis
and, thus, to the diagnosis.

A third instance in which a previous case was kept was when it illustrated
something that was not known previous to that case. The case was remembered
until what was learned from it was confirmed by a later case. While one of the other
procedures might have been used to learn a general concept, the case in which it was
learned seemed to remain available to the students until the new item of information
was confirmed by another case. We could not determine, however, whether the
general knowledge or the case was accessed first in later problem solving.

6 Summary and Conclusions

We have attempted to outline the knowledge that student problem solvers at various
levels of expertise have availasle to them as they solve real world problems and the
learning procedures by which they augment and refine that knowledge.

Diagnostic behavior seems to require the interaction between two major types
of knowledge structures: causal models and symptom-fault sets. The knowledge and
organization of these knowledge structures changes with experience. In the causal
model, the most notable change is the increasing complexity of the model, reflected
in the growing awareness of the interconnectedness of systems within the engine.
The novice is clearly unaware of the possibility that electronic failures can affect
things like fuel delivery, since he knows little about the dependencies between the
fuel system and the electrical system, while the more advanced mechanic not only
knows that such relationships exist, he considers them a highly common source of
failures. Similarly, the number, organization, and accuracy of the symptom-fault
sets changes with increasing experience. Ultimately, they are able to represent a
complex, hierarchical system of relationships. The data suggest that components
are organized hierarchically under their respective systems and are never directly
considered unless their system is determined to house the failure, or at least to be
the source of information crucial to locating the failure.

23

Building partly on these changes in the knowledge structures, and partly on
independent effects of experience on decision processes, the mechanic’s procedures
and guidelines for accepting hypotheses as diagnoses also change. The processes or
procedures used become increasingly focussed on information that will allow a causal
interpretation of the behavior observed. At the same time, the developing knowledge
structures allow the mechanic to search for and aquire more, and more accurate,
information from his symptom-fault sets and his causal model. The interaction of
these changes in both knowledge and process lead to the more accurate and efficient
problem solving seen in experts.

Thus, we see that experience is providing the mechanic with three things. His
overall level of knowledge is increasing; the organization and integration of his
knowledge structures, both the symptom-fault sets and the causal model, are in-
creasing; and his processes and criteria for reaching diagnoses are becoming more
accurate, more efficient, and more focussed on causal information.

We have also identified five different real-world learning procedures used by the
students and several roles a teacher must play in helping a student to learn at
various stages. Learning by understanding ezplanations is the process by which stu-
dents integrate a teacher’s explanation of how to solve a problem with their own
diagnostic knowledge. Active gap filling allows a student to fill in known gaps in
his knowledge by asking questions or looking in source books. Learning from inter-
preting feedback is used when the student is unable to evaluate test results he has
obtained. Interpretation may or may not require intervention of a teacher, depend-
ing upon the student’s knowledge state. Abstraction lets the student reorganize his
knowledge in better ways. It can be done independently by a student or pointed
out by a teacher. Case-based reasoning allows the student to improve his problem
solving without having a full understanding of how things work. The cases students
remember might be their own attempts to solve problems or the explanations given
by a teacher of how to solve a problem. We have identified three circumstances
under which students seem to retain their experiences: when an experience was
unexplainable, when it provided the first introduction to some concept,and when a
serious mistake was made.

While much research has gone into unsupervised learning, little research has
focused on processes by which a student learns from a teacher. Among the learn-
_ ing processes we have identified,three require extensive interaction with a teacher:
learning by understanding explanations, active gap filling, and learning by inter-
preting feedback. The particular interactions depend on the knowledge the student
already has. More research in this area is surely needed if we want to develop better
teaching technologies and practices.

24

10.

11.

12.

Bibliography

. Bhaskar, R. & Simon, H.A. (1977) Problem solving in semantically rich do-

mains: An example from engineering thermodynamics. Cognitive Science, 1,
193-215. '

. Chi, M.T.H., Glaser, R., & Rees, E. (1982) Expertise in Problem Solving.

In R.J. Sternberg (ed) Advances in the Psychology of Human Intelligence.
Hillsdale: Lawrence Erlbaum.

. DeJong, G. & Mooney, R. (1986). Explanation-based learning: An alternative

view. Machine Learning, Vol. 1.

. Glaser, R. (1985) Thoughts on expertise. Technical Report #8. Learning

Research and Development Center, University of Pittsburgh, Pittsburgh, PA
15260.

. Hammond, K. (1986). Case-Based Reasoning: An integrated theory of plan-

ning,learning and memory. Ph.D. Thesis. Yale University.

. Hunt, R.M. (1981) Human pattern recognition and information seeking in

simualated thought diagnosis tasks. Report #T-110, Coordinated Science Lab-
oratory, University of Illinois at Urbana-Champaign.

. Kolorner, J. L. (1982). The Role of Experience in Development of Expe:- se.

Proc: ‘ings of AAAI-82.

. Kolodner, J. L. (1983). Maintaining Memory Organization in a Dynamic

Memory. Cognitive Science, vol. 7.

. Kolodner, J. L. & Simpson, R. L. (1984) Experience and Problem Solving:

A Framework. Proceedings of the Sizth Annual Conference of the Cognitive
Seience Society.

Lancaster, J. S. & Kolodner, J. L. (1987). Problem solving in a natural task
as a function of experience. Proceedings of the Ninth Annual Conference of
the Cognitive Science Society.

Lancaster, J. S. & Kolodner, J. L. (1988). Varieties of Learning from Prob-
lem Solving Experience. Proceedings of the Tenth Annual Conference of the
Cognitive Science Society.

Martin, J. D. & Redmond, M. (1988). The Use of Explanations for Completing
and Correcting Causal Models. Proceedings of the Tenth Annual Conference
of the Cognitive Science Society.

25

13.

14.

15.

16.

17.

18.

19.

Mitchell, T. M., Kellar, R. M. & Kedar-Cabelli, S. T. (1986). Explanation
based learning: An unifying view. Machine Learning, Vol. 1.

Mitchell, T. M., Mahadevan, S., & Steinberg, L. I. (1985). LEAP: A Learning
Apprentice for VLSI Design. Proceedings of IJCAI-85.

Rasmussen, J. (1978) Notes on diagnostic strategies in process plant environ-
ment. Riso National Laboratory Report #RISO-M-1983, Roskilde, Denmark.

Rasmussen, J. (1979) On the structure of knowledge: A morphology of mental
models tn a man-machine contezt. Riso National Laboratory Report #RISO-
M-2192, Roskilde, Denmark.

Rasmussen, J. and Jensen, A. (1974) Mental procedures in real life tasks: A
case study of electronic troubleshooting. Ergonomsics, 17(3), 293-307.

Redmond, M. & Martin, J. (1988). Learning by Understanding Explanations.
Proceedings of the 26th Annual Conference of the Southeast Region ACM,
Mobile, Alabama.

Schank, R. C. (1982). Dynamic Memory. Cambridge University Press.

26

Appendix B

GIT-ICS-89/17

MECH:
A Computer Interface for Teaching and Investigating
Mental Models and Troubleshooting

Lawrence W. Barsalou1
Christopher R. Hale'
Michaei T. Cox2

1School of Psychology
Georgia Institute of Technology
Atlanta, GA

2microSpheres

Atlanta, GA

March 1989

This project was supported by Army Research Institute contract MD A903-86-C-0172 and was written while the
first author was a visitor at the University of Michigan. We are grateful to Janet Kolodner for the opportunity to
perform this work. Correspondence should be addressed to Lawrence W. Barsalou, School of Psychology,
Georgia Institute of Technology, Atlanta, GA 30332 or barsalou@gatech.edu.

MECH i
Abstract

MECH is a computer interface for providing instruction on mental models and troubleshooting
skills and for performing research on these topics. Section I describes MECH's general
characteristics. MECH currently runs on IBM PC class computers, is relatively domain-
independent, and does not require programming to use. Instead, authors must only construct
text files with a text editor to configure MECH for a particular domain. Using hypertext and
hypergraph mechanisms, MECH provides students with structural and functional knowledge of
a domain at a conceptual level. MECH does not currently provide high-fidelity experience, nor
simulate the system it models. Although MECH does not simulate a domain, it uses simple,
easily-constructed production systems to provide a dynamic and realistic troubleshooting
environment. MECH also teaches functional/qualitative reasoning, symptom-fault rules, and
domain-independent strategies that underlie troubleshooting. MECH does not currently teach
actual test and repair procedures. Section II presents the theoretical principles that underlie
MECH's design. Section III presents an overview of MECH's utilities and how they work.
Sections IV and V describe how MECH can be configured for a wide variety of instructional
and experimental settings. MECH stores a complete record of keystrokes, millisecond latencies
between keystrokes, and screen information from each session. These keystroke files provide a
rich source of data and can also be used to control MECH during later sessions in a wide variety
of manners. MECH has a payoff structure that can be used to motivate students and measure
their troubleshooting ability. MECH also includes a timed true-false test that can be run
optionally. Section VI describes how to obtain the MECH software at no cost and configure it.
This section also provides complete instructions on how to perform demonstration sessions and
how to perform all possible operations within MECH. Section VII provides complete
instructions on how to author files for a new domain and on how to alter already existing files.
Section VIII describes numerous suggestions for further developing and improving MECH
through reprogramming.

MECH i

L INTOAUCHON ettt sttt secn e aeess e s e e b e a bR en b b e neas !
A, WRHAE MECH IS ottt as s st 1

B. WHat MECH 1S MOttt s st sis et ss st ses 3

C. HOW 10 USE thiS TEPOTT ...ttt srensas s s s st s sa s st n s es s e basanes 4

[I. MECH's design principles eneraseeseseasensenssseens cervesanetsensas s arasenasnacs 5
A. Representing mental models.....ccoomnmnerernseerecnsennece. .5

1. ANAlogICal MAPPING ..ceuveeuecmremcensreneensressisessessenssesssssssssssssssmssisssssssssssssssassasssssssssssassassasees 5

2. Hierarchical Organizationcoecreeemicnimsireniuesesisensnsssssesssssstssssesssnsss s sssssssssssssasses 5

3. MUltiple MOdelS. ottt 5

3. COMIPOTMEIILS c.eeerverereeencseieiiriacieeetseseietecsesesaassessasass s sesesasa e asssasas st st asasebst st s e s e sasasasaseasasanscns 5

5. INtErNAl TEIATIONS e creeecccerernasesn et be e s sas s ess b s bsb s s s s nsass e s s s nseas 6

6. EXtErnal relatIONS ..ceceerecereureereenrircnecaricastistst s sssssn st sssassssessssssasssssssanssssssssssssssans 6

7. General physical mechanismscccoceeeeeuee. retenettsasasns s s s ase e ssaas s s ne s s e asantsen 6

B. Processing mental MOdelS....cocoeeeerniimniniiniiiicnre ettt 6

1. Functional/qualitative reasoning rules......ooueeveevernninieseniniesnsesseeiseesaeseees 6.

2. SymPptOmM-fault TULIES ..ottt ettt st s 7

3t MELATULES ...ttt es s st a s s s bbb st n s s nnees 7

4. COMPIIALION. ceucecteierrireeriireriensecestsetscacassessssassnesssssssesssasssssssssssessasssasasessassssnssastossssasssens 7

[1I. Overview of MECH's structure and capabilities .omecemeeecemsscssnssicnscnnstnsnesensinennns .8
A. Parameter CONfIgUIation......cccciniiniiirirnssessssssnsssssssssssssmsusssssssssesesensasensassstsssssssssnssonsssaseses 8

B. MECH's hierarchical Menu SYStEMcccoururererirriisisnsernsessssnssssssssssssssnsnsssssussasassessssesensssasenes 8

C. MECH's primary utilities....... ettt s bbb bbb e bR bt ea e 10

1. HELP ereneecsensnsesessasassasssassereterasrererens 10

2. MOVE et resesens e iss s sssas s s sssse s sassasasse s st as st s s ssss st s ssesssseneasessacs 10

3. TUTOR e ctreceteesnesreneescssssssssssissssassesssssssssasesssssasssasssassssssassssassssassssssssssssassatsses 13

G, JOBS... ettt st s R R R st st e 14

S TEST et s ses s sesrs s ssssessssssssssssesessrssessasssssssassasasssssssssesessssanassssssanssasans 14

6. REPAIR ...ttt sssessessssesstassesssssssssssssasssasssssssesssasassssssssssasasasssssssassasassess 15

D. Payoffs during troubleShOOting.........couumimeirerernsinrinsisnsssnssssisesnnsessnssssascsisasssscssasensasssssns 15

E. Keystroke data files and SHOWKETYS.......cooovviuimnmmmmsisesrinsssssissssnis s 17

F. Keystroke control and split control eostessuseasusestssnssesshaseistssrsnnsansssassasannnnsnsasannsts 17

G. The timed true-false test eeureetsaetes st st a e sba s R s b aes 17
IV. MECH as an instructional envirONmMENL.......ccceocveueremrereresseninissssssnassssssssscssmssucietsssasmscssscasaes 19
A Learning mental models. retetesasersas et ssaeseas s eaeRsasasrene et ssans 19

1. Keystroke controleeeeeeeirenerensesescncnees teeseereebensesrteasanestesesetensteesateneaeaseneas 19

2. USET CONMIOL.c.uiicteertcecreeeceeccesecasesssssaessae s sssesesssssassnnaes esteeestes e s et beaebsassnene 19

B. Learning to troubleShO0 ... ettt 20

1. KeYSITOKE CONITON covimiiiiieieieieict ettt secsi e seasesean e s n s s s s st st sn s 20

2 U SET COMITOMoarnneeieeeeeeeeeeseeseseeseesessesasessasaessesssaseassasssasessenssssesanssnsasessessensareasensessesnsssesnsees st

MECH iii
L INETOQUCHION ottt ettt ettt sttt sensa bbb st s s s e st asa et ansnsntssanes 1
Al WAL MECH IS ettt et b st e 1
B. WHat MECH S DOt ..ttt ass st s sasaen st st ss s nes s assannes 3
C. HOW 10 USE ThiS TEPOTE....ccuieeiirieeciiecieie e crenseeeeaesaess et see st e e csenstesssasssesssssesssassesassssesans 4
Il MECH'S deSign PIiNCIPIES ...c.cueuiuiecceeicereerenreerecnseseeseessecaescecssascssasensesnassssssassisessssssssssssassassess 5
A. Representing mental MOEIS ..ot tsss s tssssssssnasasssssesanes 5
1. ANAIOZICAl MAPPING ocimreeiricirtrreeiecietseieireresssasesesessasae s sessescnsssesesesssssasserssssesassssassssasnnes 5
2. Hierarchical OrganizZationceinrceeicciccenciceeseseisseseesessesesesesessassssesssasaes 5
3. MUltiple MOGEIS ..ottt taeasas s et et e st sesneans 5
4. COMPONEILS ..eovvrierecececnereucueaeeetetste s sstse s s s tessssasssasasassssesessassesssssssssssssasessensasssssssssassssssns 5
5. INtETNAL TEIATIONS ..ttt aes st ss vt ss s st s s s s s s s sbatesssesesannens 6
6. EXternal TEIAtIONS c..ccucueeieceeec ettt scseses s reesessssesessssesessssssssssserssssssansans 6
7. General physical MEChANISITSc.cuirereerecreenreresecsneetcsstecneeesseseseseseesesstasesessessassscses 6
B. Processing mental MOEIS.......covirireerenineerricrteeeeecceisreeeseee e ssssasesssasssssssesssssnnes 6
1. Functional/qualitative reasoning rules.......ooceuerrceecreneeereresessessssessnssessssssesssssssssnes 6.
2. Symptom-fault TUIES ...ttt sttt sesn e et esessasensanes 7
3t MELATUIES ..ottt ses bbbt sttt s m s n s 7
4. COMPIIALION.cuuuiriiircerecacaeiirecaetseetsensistseisessescacssesesesessntssssassssssssssssssassssessensessasessasencassace 7
III. Overview of MECH's structure and capabilitiesc..oovcsueeueeruserccnsenenceccnsensesscnecssensessessessessens 8
A. Parameter CONfIZUIAION. o e cccecrrrarrersesseescsenseesssnnsesasssssssssasssssssmssssassesssssssssssssssssessnssssnsans 8
B. MECH's hierarchical MenU SYStEM.......ccveerureeeereemseremiensesensasiesssessssssessascssessesesssssssssssseensenss 8
C. MECH'S PIIMAaTY ULHIHES. .coceerecenrrrrrernnnensersnessnsssassnsesessssscssasesssssessssesssesssnsecssssassasscsens 10
Lo HELP et tntstcenecnnssessssnssssnsnssssssasessssssssasssossssssssssssssssssstessesssssssssessasasess 10
2o MOVE.. et s ses st sae st asastsase st s s ens ot as s ssaasssssenenstsenees 10
3. TUTOR. ... eeeetreensentseecsiessesesssassssssssssssssssssesassessssssssscsssssssassasssinsansessassassasaecssssss 13
Gu JOBS ettt sss s e e s e a sttt Rt s et bbb et 14
S TEST e crereeeecseneceasesasssnessssssensssssastasesessessasessnsscssessassstasasssesessssensesssssssessssessenses 14
6. REPATR.....coueieteeeeenesnseecssnsessssensescssensasssasastssnsasassssssssssssssessssssssessensassassesssssassseses 15
D. Payoffs during troubleshOoting..........cocceceemennicnenninnesnescseennisnensisssisessimcssisessessessssssssns 15
E. Keystroke data files and SHOWKEYS..........coomrimrrisssneemmmasesesmsscsimmssssssissasssss 17
F. Keystroke control and split CONIIOL......ccecreurrreercnnemresusesessensersenniseissasesesnnanssssssesssssssssssness 17
G. The timed true-falSe LStcuoriireeccrcerrerrenernicrersesrsteeneiesissssseseaststsassssassessasesesssssessasens 17
[V. MECH as an instructional environmeNt........c.eceereneuresnneccnnecsecsssssssssisssscsensscsssssssssessessens 19
A Learning Mental MOAElS.... .ot reeeerrrseessssessesecseasessssnee sesensencercsasssensassosoens 19
1. KEYSIIOKE COMITOL .uuuerrereeeererrccreseeessaeteresaesessesssssssessssssssssssssssasassesnsssssssssssssssessassnnas 19
2. USET CONMIOL.uuiuiirircrerirueareccrinensssssssseneesaeesesstssssasnsssseasasessesssssessnssasassscsssesassssssssssasas 19
B. Learning to troubIESHOOT ... ettt s eseaensasbe st asasssacans 20
1. KEYSITOKE COMIIOL ittt eeteee s oo nsss s ssa bbb nsat e 20
2. USET COMITOL ittt stenesee e sesessasssssasssas s benbas s e bbb s s bbb et et

MECH v

C. Description file for TEST and REPAIR ..., 57
D. Description files for JOBS ..ottt st snaes 60
Lo JOD IS oottt sttt 60

2. FAUIL fIIES cuuruieeceeceietetci ettt cnitemcssae s 63

3. SYStEM PrOQUCLIONScccucureercecucneriresasessaesssnssesssse s s s asss st sesssasasassssssessssns 635

D. TSt PrOQUCLIONS......cucvececnecreeeernecartnmissnsitssesesssssessssssesssssnssssessssssssisssassasasassnsses 67

3. JODLSE fIl@S ..uiueeurrrereeeceeeeeeceeneeserse s secsn s ns s sasbesess s sesese b e st snanesesnna s sanas 68

E. Description files for HELPooocconivieirieinrrecrcieictiiicinsicaniiesssssssssssssesssssssssssases 68
F. Instruction files for keystroke control and the timed true-false test......ccoovrireinrnnnenn 70
G. Probe file for the timed true-falsSe teSt it 70
VIII. Future revisions and additions t0 MECH ...ttt 74
A. Minor miscellaneous TEVISIONScccecrurereceeseensenerirescsisiuinisninssssesesessssssasssssessssasssssssnsassses 74
B. Implement complete domain-independence......cierrrernnninssesssienessseessisisusiscnaas 77
C. Implement extensions t0 Other PrOCESSOTS.....ccceuiiireirirrrrssisssserasstssssssssensasessessnssesessnenene 77
D. Add bit-mapped graphics, color, and MOUSE CONIOL.....uuverrerirenrmsnsrsiesrensasnessssecacnns 78
E. Expand pProgram CAPACILYceeeeecerusesescrceseneressissssiusissmsissmsssssssssssssssssesssssssssssssssssssssssssasssssssss 78
F. Add the COMMENT ULILY ccovcreeeeerireesrnneesensesesecssensinsissassmnsssissssinsasssesssssssssssesssssssssssasassens 79
G. Add the MAP UHLLY...c.oiereecenenrensenrensesisisessiescsscssenssssssissasesssesssssstsssssstssssssssssssasssasssssssses 80
H. Add the SEARCH ULILY c.cvreenrneiniteriniciininnicisissiessssssssssnesesssssssssssssssssssssasessssassssassssasanss 81
. Add analysis programs for keystroke and timed true-false dataccevevsvnenresescrsenceee 82
J. Add authoring utilities for constructing MECH file€s.....ou i 82
K. Add video disk teChNOLIOZYccovvurerirenririnisiunirinisireniscnnsesessesnssssssnsssissssssesssssssssssasssssaencns 82
L. Add an interface for qualitative SIMUIAtIONScvvcuiiicinerereres ittt 83
References... e eeeeseeee st SRR AR 8RR AR SRR R R 85

Section I I

I. Introduction
A. What MECH Is

MECH--a computer program currently developed for IBM PC class computers--provides
students with training on the structure and function of conceptual domains. Consider the
domain of small lawn mower engines, for which we have currently configured MECH. Through
graphics and text utilities that decompose domain structure, MECH teaches the hierarchical
organization of the engine. For example, MECH teaches the systems that compose the highest
level of engine structure, namely, the fuel, ignition, cylinder, drive train, lubrication, and cooling
systems. In turn, MECH illustrates the composition of these systems. For example, the ignition
system decomposes into the magneto, breaker points, and spark plug. Decomposition continues
until MECH reaches the level of terminal components. For example, the breaker points
decompose into terminal components for the plunger, moving arm, spring, moving point, and
stationary point.

MECH also teaches students functional organization, showing the functional/qualitative
relations underlying each system. For example, MECH might show how air and fuel enter the

carburetor, how they are mixed in the carburetor, and where the carburetor sends air-fuel
mixture.

Note that MECH only provides students with an abstract conceptual account of a domain and
does not provide direct sensori-motor experience. Students who learn about small engines from
MECH would probably not know what a carburetor looks like or how to find one in an actual
engine. Instead students using MECH would acquire conceptual understandings of the
carburetor's internal structure and function, as well as how it interacts with other parts of the
engine. In Section VIILK, we suggest how MECH could be extended to provide sensori-motor
training, along with conceptual training.

There are a wide variety of applications across which such a conceptually-oriented tutor may be
useful. Some possibilities are as follows:

(1) Ininstructional domains, students may often need to acquire a conceptual
understanding of how something works. For example, a student taking a non-
performance course on mechanical devices may need to acquire abstract accounts of
device structure and function.

(2) A manager may want a rudimentary understanding of how the equipment works that
% his or her assistants operate.

(3) Someone who does troubleshooting completely according to fixed procedures ("by the
book") may want a conceptual understanding of the domain simply out of curiosity. .

(4) Someone who does troubleshooting in a domain where fixed procedures do not exist,
and where functional/qualitative reasoning is necessary for isolating faults, may find
conceptual tutoring, not only helpful, but necessary in preparing for troubleshooting.

Section [3

session can be used to show a second group of subjects the second technique. Both
groups can then perform troubleshooting on a common problem set to see which
technique promotes the best learning.

To run MECH under "keystroke" control, a student simply presses the <ENTER >
key continually. Each time the student presses <ENTER >, MECH implements the
next keystroke from the keystroke control file, just as if it had been entered at the

keyboard. A wide variety of manipulations can be constructed through this
mechanism.

(4) MECH contains a timed true-false test that can be performed at the end of a session.
if so desired. Responses are measured with millisecond accuracy.

(5) MECH presents students with extensive feedback about the success of their
troubleshooting efforts, as well as associated costs. This payoff structure can be
used to motivate subjects in various ways and to measure individual differences in
troubleshooting skill.

Turning to implementation, MECH has been designed for use across a wide range of domains.
We have identified what we believe are domain-independent principles of mental models and
troubleshooting and have developed MECH around them. Although we have currently
configured MECH for the domain of small engines, it could be configured for a wide variety of
other domains, including other mechanical devices, electronic devices, social organizations,
computer programs, and so forth. In fact, our programmer has configured MECH to teach
programmers about itself, so that programmers can easily make alterations if they wish. Ifa
reader is interested in obtaining this particular implementation of MECH, they can do so by
writing us and including a floppy disk (see Section VLA for disk requirements).

However, MECH does not require any programming to be used across a wide range of domains
and applications. If a user wants to configure MECH for some other domain besides small
engines, he or she only needs a text editor to construct the input files that MECH requires.
Section VII completely describes how to construct every input file that MECH uses. Similarly,
if a user wants to revise our input files for small engines, Section VII provides all the necessary
information about how to do this. If a user is interested in reprogramming MECH, Section VIII
contains some relevant guidelines.

B. What MECH Is Not

MﬁCH does not provide students with a high-fidelity simulation of a system. Students do not
receive perceptual training that would allow them to actually identify the components of a
system or malfunctioning components. Similarly, students do not receive procedural training in
actually performing tests and making repairs. For these reasons, MECH is not sufficient for
teaching troubleshooting, although it may be a useful accompaniment to hands-on training or to
a high-fidelity simulator. Because hands-on training and high-fidelity simulators provide so
much sensori-motor information, students may have trouble simuitaneously extracting and

Section II S

[I. MECH's Design Principles

In this section we present the theoretical assumptions that underlie MECH's design. Please
note that we do not cite much previous work relevant to our interests. Instead our goal here is
primarily to describe the system we have constructed. Later reports will make more contact
with the literature.

A. Representing Mental Models
We assume that the following representational assumptions apply to most mental models:

1. Analogical mapping. People generally try to acquire a one-to-one mapping between the
components and relations of their mental model and the components and relations in the
corresponding physical device (Johnson-Laird, 1983). A person's mental model may not
represent all the components and relations in the corresponding physical device. Components
and relations that are represented may be incorrect.

2. Hierarchical organization. To the extent that the organization of a physical device is
hierarchical, the organization of a mental model may typically be hierarchical as well. More
specifically, the device and the mental model both decompose into high-level systems, which in
turn decompose into lower-level systems, and so forth, before decomposing into terminal
components. Components belonging to two systems may occasionally violate strict hierarchical
organization. For example, the spark plug can be viewed as belonging both to the ignition
system and the cylinder assembly. Even with these violations, it is still possible to decompose a
device in a quasi-hierarchical manner that serves as a useful organization of components. In a
small engine, decomposition may proceed from the engine to the ignition and fuel systems, from
the ignition system to the magneto and spark plug, from the magneto to the coil, and from the
coil to terminal components such as the primary and secondary wires.

3. Multiple models. A given mental model may be one of many possible for the same
physical device. There are many ways models can differ. There can be simple ways in which
different people represent the same device somewhat differently. Or there may be multiple
models for the same device that capture fundamentally different kinds of input/output relations
and serve fundamentally different kinds of reasoning goals (e.g., White and Fredericksen, 1986).
We assume that any hierarchically-organized mental model contains the following three types of
representational entities:

4. Components. These include representations of the specific systems that compose a more
-general system, as well as the terminal components of the most specific systems. In a small
engine, components of the engine include the fuel system and ignition system (decomposition of
a general system to more specific systems); components of the coil include the primary wire and
secondary wire (decomposition of a system to terminal components).

Section I1 7

changes in one component affect the qualitative states of connected components (e.g., as the the
throttle valve is increasingly opened, increasingly large amounts of fuel enter the carburetor).

As numerous theorists have suggested, people use functional/qualitative rules to simulate
performance of a device. Series of rules can be applied to see how the input to one component
produces effects over paths of relations that emanate away from it. Following Hegerty, Just,
and Morrison (1988), the operation of these rules depends on the properties of the respective
components, as well as on the inputs they receive (e.g., the rate of fuel flow through a tube
depends on its diameter, as well as on the amount of fuel it receives as input). Both properties
and inputs provide constraints on the behavior of components. Functional/qualitative
reasoning rules capture these constraints and enable predictions about performance. More
specific forms of these rules may on occasion allow quantitative prediction.

2. Symptom-fault rules. These rules start with observed problematic symptoms and provide
hypotheses about what components might be at fault. For a small engine, a symptom-fault rule
might state that whenever there's a strong gas smell during engine operation, check to see if the
choke is broken. Another rule might state that whenever the engine type is Briggs and Stratton,
check to see if the condenser is broken. Symptoms may either be causally related to faults, or
they may be incidental features that correlate with faults.

3. Meta-rules. These include rules about how the structure of a mental model should be
searched to find a fault (e.g., breadth-first versus depth-first); rules about the transitivity of
qualitative reasoning (e.g., if component X produces an input to component Y, and if
component Y produces an input to component Z, then X produces a distant input to Z); rules
about how to handle remindings; etc. In contrast to qualitative reasoning and symptom-fault
rules, meta-rules may be fairly domain-independent. In general, meta-rules guide the executive
control of troubleshooting by setting goals, deciding how to handle errors, handling
interruptions and unexpected results, etc. (cf. Norman & Shallice, 1986).

An organizational principle also seems important to processing:

4. Compilation. With practice at using any sequence of the above rules repeatedly, the
sequence may become compiled into a procedure that produces more efficient processing in the
future. Sequences of qualitative reasoning rules may become automated for frequent kinds of
qualitative reasoning. Sequentes of symptom-fault rules may become automated to zero in
quickly on suspected faults. Sequences of meta-rules may become automated to minimize
wasted resources and non-optimal behavior. Moreover, combinations of different types of rules
may become automated to the extent they frequently occur in a systematic pattern.

v
The above seven principles of representation and four principles of processing guided our
design of MECH. As described in later sections, MECH can be used, at least to some extent,
for training students on each of these principles. Again, by no means do we claim that MECH is
sufficient for providing students with complete understanding or skill in any domain.

Section III 9

Figure 1
MECH's Menu System

Current System: enginelignition\magneto Menu: Main
F1 Move F6 Help
F2 Tutor
F3 Test
F4 Repair
F5 Jobs
Current System: enginelignition\magneto Menu: Move

F1 Move Up to Engine System

F2 Move Up One System

F3 Move Down to Subsystem #

F4 Follow an Input

F5 Follow an Output F10 Return to Main Menu

Current System: enginel\ignition\magneto Menu: Tutor

F1 System Description
F2 Description of Component #
F10 Return to Main Menu

Current System: engine\ignition\magneto Menu: Jobs

F1 First/Next/Current Job
F2 Previous Job

F10 Return to Main Menu

Current System: enginelignition\magneto Menu: Test
Fl1 List-Perform System Tests F3 Start the Engine
F2 List-Perform Component Tests F4 Stop the Engine
. ’ F6 List Charges So Far

F10 Return to Main Menu

current System: engine\ignition\magneto Menu: Repair
Fl1 List-Perform System Repair F3 Start the Engine
F2 List-Perform Component Repair F4 Stop the Engine

F5 List Previous Repairs
F6 List Charges So Far
F10 Return to Main Menu

Section IIT

FUEL SYSTEM

1

Figure 2

Engine Diagram

air-fuel mixture

IGNITION SYSTEM

2

_J

LUBRICATION SYSTEM

high voltage current—

v

v

11

Examples of Nested Diagrams for a Small Lawnmower Engine

1

CYLINDER ASSEMBLY ?

oil

3

COOLING SYSTEM

J

v

displace

4

air

»

i
» | DRIVE TRAIN ?

rotatel

E —displace—»

C —rotate

C —rotation—»

| rotate

v

lawnmower blade

Ignition System Diagram

BREAKER —low voltage—»ground
POINTS —low voltage—
1 v
A
I termination of CONDENSER
low voltage 2
voltage
v
> MAGNETO high——»| SPARK
3 voltage PLUG
4

v

—-manual pressure

» | STOP SWITCH

-~

Magneto Diagram

—combustion—»*> N

—high voltage—» ground

I L
‘ |
| .
low termination
voltage of Toltage
flywheel 1 v
magnet COIL high
2 magnetic - 4 voltage—» J
reversal

armature 3

v

Section III 13

Currently, MECH does not use bit-mapped diagrams. Instead its diagrams must be constructed
in ASCII and extended ASCII (see Section VIL.A.4). As discussed in Section VIIL.D, future
versions of MECH will incorporate bit-mapped graphics as an option.

The MOVE module allows students to move quickly and easily through the space of diagrams.
Except in a few situations, a diagram is always present on the screen. To move to a new
diagram, students call MOVE and implement one of the functions from its menu. These
functions include moving to the root diagram for the engine, moving up one level in the
hierarchy from the current diagram, or moving down to a lower system. Students can quickly
and clearly view decomposition of the engine using these three "vertical” functions. Two further
functions allow traversing external input and output relations. By tracing back through the
inputs to a system, students can discover how various forces and substances converge on that
system. Following the outputs out of a system allows students to see how the current system
affects other systems. Students can quickly and clearly view the functionality of the engine using -
these two "horizontal" functions.

Using MOVE is essential to the TUTOR, TEST, and REPAIR utilities. Tutoring, testing, and
repairing at any point during program use are always limited to the current diagram. For
example, if a student is currently viewing the diagram for the breaker points, he or she can only
learn about, test, or repair the breaker points. To learn about, test, or repair some other part of
the engine, the student must move there first.

An advantage of this design is that it allows us to track what-parts of the system a student is
currently examining. Because MECH records all keystrokes (described in Section IIL.E), we can
follow a student's path through the model. We can see when they needed tutoring, when they
ran tests, and when they attempted repairs. Because we also store the latency for each
keystroke, we can see how much time a student spent at each point in the model performing an
operation. Sections IILE and VLJ discuss keystroke data files in greater detail.

3. TUTOR. The diagrams provide some tutoring, given they represent the components and
relations for each system. TUTOR, through text, can describe these components and relations
in much greater detail. Analogous to the diagrams, text units are organized hierarchically. The
root contains the text describing the engine as a whole at a very general level. Texts associated
with subordinate nodes of the engine topology describe increasingly specific systems that
constitute decomposition of the engine.

For each diagram, students can access one system description of the diagram as a whole and one
component description for every component in the diagram. The system description provides a
general description of how the system functions as a whole and how it interacts with external
systems. Each component description describes the structure and local function of a specific
component in the current diagram. Section VIL.B provides detailed information about the
descriptions used by TUTOR.

Section III 15

Whenever a student performs a test, he or she receives feedback about the results. The test
may have been unnecessary, or it may have any number of other possible outcomes. The
outcome of a test depends on productions stored in a file written specifically for the current job.
This file, and the productions in it, are easily constructed with a text editor. Section VIL.D.2
describes these productions in complete detail. More generally, each production has a set of
broken conditions and a set of working conditions that trigger it. Broken conditions are
components that must be broken for the production to fire (i.e., faults that haven't been
repaired yet). Working conditions are components that must be working for the production to
fire (i.e., faults that have been repaired). If both sets of conditions are completely met, the
message associated with the production is presented to the student as the outcome of the test.

One advantage of this approach is that the outcome of a given test can vary widely, depending
on the current state of other systems and components in the engine. For example, imagine that
there are obstructions in the carburetor, both for air and fuel intake. Further imagine that a
student tests the cylinder to see whether it is admirting air-fuel mixture. If neither the air or fuel
intake has been repaired, students receive a message saying that nothing is entering the
cylinder; if the air problem has been repaired, students receive a message saying that only air is
entering; if the fuel problem has been repaired, students receive a message saying that only fuel

is entering; if both have been repaired, students receive a message saying that the test revealed
no fault.

As can be seen from this example, a test can report that a component is not working properly
even though it is not a fault (e.g., the intake value of the cylinder may report not receiving air-
fuel mixture, not because the valve is broken, but because other components connected by
external relations are broken). By taking advantage of such relations, we can orient students
toward causal reasoning about symptoms and faults. Moreover, because a given problem takes
both broken and working conditions into account, it provides a dynamic testing environment in
which the outcomes of tests can vary over the course of troubleshooting. Sections VIL.C and
VILD provide a complete account of how MECH handles tests and repairs during
troubleshooting. '

6. REPAIR. A student is free to make any repair at any time, regardless of whether it needs
to be done. If the repair was necessary, students receive a message saying that the repair was
needed. If the repair was unnecessary, students receive feedback saying the repair was
unnecessary. When a repair is made, the fault disappears, thereby changing which test
productions will fire. To see if the current engine has been completely repaired, the student can
try to start the engine at any time. If no faults remain, then no productions will fire. MECH
wilkstate that the engine has been repaired and that the student should go on to the next
problem. Students must try to start the engine after every repair before attempting any
additional tests or repairs.

D. Payoffs During Troubleshooting

A cost is associated with every test and repair. Section VII.C describes how the author of a
MECH configuration assigns costs. Students receive constant information about how much

Section III 17

E. Keystroke Data Files and SHOWKEYS

Every time MECH runs, it stores a complete record of all keystrokes and their millisecond
latencies. For each keystroke, MECH stores the current diagram on the screen, the current
menu on the screen, the particular options selected from the menu, and the time since the
previous selection from a menu. MECH stores this information originally in a compact file that
is somewhat difficult to read (by humans). Consequently, we wrote SHOWKEYS, which
transforms a keystroke data file into a larger file that is easily readable. Once one has become
familiar with the diagrams and menus in a domain, one can read a file produced by
SHOWKEYS easily, thereby following what the subject did.

F. Keystroke Control and Split Control

MECH is designed such that the keystrokes provided by one user can be used to control MECH
for other users. At the start of each session, MECH asks if the session will use keystroke
control. If keystroke control is used, MECH loads a keystroke file constructed from a previous
session. To operate MECH, a student simply presses the <ENTER> key to present each new
screen of information. Upon receiving each <ENTER >, MECH implements the next
keystroke in the keystroke control file, just as if it had been entered at the keyboard.

Keystroke control can be used in a number of ways. For example, an instructor could present
high-level systems to students on one occasion and low-level systems on another. Similarly, an
instructor could demonstrate breadth-first search for a fault on one occasion and qualitative
reasoning on another. Using keystroke control, an instructor can present any part of MECH's
data files to a student, combined with any of MECH's operations, in any order. Experimentally,
keystroke control can be used to implement a large variety of independent variables. Sections
IV and V describe various possibilities concerning keystroke for instruction and research.

MECH also allows split control. When split control is invoked at the start of a session, the
student starts out under keystroke control. But once the last keystroke in the control file has
been implemented, control reverts to the student (note that MECH ends the session at this
point under normal keystroke control). Split control can be used to present information to
students initially but then allow them to perform further exercises on their own afterward.

Prior to beginning keystroke control or split control, MECH presents an instruction file to
students about how to control MECH during keystroke control. Once keystroke control ends,
MECH presents another instruction file describing what students should do next (e.g., go on to
selfscontrol if split control is invoked, or wait for the instructor if the MECH session ends). The

content of both instruction files is determined by the person authoring MECH's data files (see
Section VILF).

G. The Timed True-False Test

MECH provides the option of performing a timed true-false test at the end of a session. When
initially configuring MECH, the instructor specifies that the test should be run and specifies the

Section IV 19

[V. MECH as an Instructional Environment

As described in Section [, MECH can be used to provide people with conceptual knowledge
about the structure of a domain and with practice on a variety of troubleshooting skills. Again
we note that MECH is not a substitute for high-fidelity training situations. Instead, its optimal
use may be in situations where only an abstract conception of a device is required, or in
situations where conceptual training is integrated with high-fidelity training.

A. Learning Mental Models

The following subsections suggest possible ways MECH can be used to teach mental models to
students.

1. Keystroke control. An instructor can use MOVE and TUTOR to construct a sequence of
diagrams and descriptions that serve a particular instructional goal. Once the instructor exits
MECH, the keystroke file saved from the session can later be "run” to direct students through
the sequence of diagrams and descriptions viewed by the instructor. A large variety of "lessons"
can be constructed in this manner.

For example, a "general lesson” that provides a rough idea of the domain could be constructed
by only traversing the top-level systems of the domain. Later lessons could be constructed by
traversing each of these systems in depth. From our configuration for small engines, a "general
lesson" might only present the high-level diagrams and descriptions for the fuel system, ignition
system, lubrication system, cooling system, cylinder assembly, and drive train. Six subsequent
"specialized lessons" could then cover each of these high-level systems in depth. For example,
the lesson on the fuel system would cover the fuel tank, fuel pick-up system, and carburetor.

The lessons described so far primarily follow the hierarchical structure of the domain,
structuring lessons around the decomposition of systems. Alternatively, lessons can be
organized along paths of functional relations. For example, a lesson could trace the path of fuel
through an engine; another could trace the path of electricity; another could trace mechanical
forces produced by the drive train.

Further ﬂexibility can be achieved by manipulating the diagram and description files. Different
lessons could usé different diagram and/or description files that focus on different aspects of
training. For example students could be tutored on electronic circuits at two levels: a
qualitative level’and a physical level (White & Fredericksen, 1986). One set of diagrams and
desgriptions might present the qualitative structure of the domain; whereas another set might
present physical mechanisms. Similarly, different sets of diagrams could be used to teach the
structure of a device and procedures for repairing it. One set of diagrams and descriptions
might present structure, whereas another set might present procedures.

2. User control. Rather than being under keystroke control, students could control MECH
themselves during learning. An instructor could allow a student to browse MECH's diagrams
and descriptions with no direction. Alternatively, instruction files could orient students toward

Section IV 21

problem, jobs with the problem can be created, which the instructor solves. Subjects can first
read about the problem in the instructions that start keystroke control and then watch the
instructor solve instances of the problem. If split control is used, students can subsequently
solve instances of the problem themselves.

Note that job descriptions can be used to teach students about problems. For example, various
information in the job fields could provide students with information about engine models,
engine ages, engine maintenance histories, and engine symptoms for common kinds of problems
(see Section II1.C.4 and VIL.D.1). Even information about the actual faults and strategies for
finding them could be included (e.g., in the OBSERVATIONS field). With a sufficient number
of lessons, students could be exposed to the full range of problems known to occur for the

system. In a sense, such training would develop subjects' ability to categorize symptoms into
fault categories.

Fourth, lessons can be constructed to teach functional/qualitative reasoning. An instructor
could first access a job description that specifies a non-working component and then run a test
on that component. The message fired by the production controlling the test could state, first,
that the component is malfunctioning and not broken, and second, that something in the path of
the component must be malfunctioning. At this point, the instructor could use the FOLLOW
INPUT option of the MOVE menu to trace inputs into the component, stopping at each
previous component and testing it. In this way, the student could learn two important things
about troubleshooting in situations where domain-independent strategies and symptom-fault
rules are not optimal. First, the student could learn that it is important to reason
functionally/qualitatively. By seeing the instructor do it across a number of problems, the
student could learn the general strategy. Second, the student could learn specific functional
paths within the system that might frequently be relevant to problem solving. For example, the
instructor could trace the flow of fuel through the engine, the flow of electricity, or the flow of
mechanical force. The instructions that start keystroke control could orient students to the
strategy, and subsequent problems could allow students practice at using it.

Lessons on functional/qualitative reasoning could also be run in the opposite direction. The
instructor could start with a broken component and then use the FOLLOW AN OUTPUT
option in the MOVE menu to trace the effects of the broken component through the system.
Or lessons could similarly address both forward and backward reasoning. The instructor could
begin by tracing the causal effects of a broken component forward, running tests on components
that receive faulty outputs from the broken component. Subsequently, the path could be run in
reverse, showing students how to trace the reverse path of inputs during troubleshooting.

v
Finally, learning about mental models can be mixed with troubleshooting. An instructor could
first present a problem. He or she could then use the MOVE and TUTOR utilities to teach
students about the relevant part of the system. The instructor could then list relevant tests and
repairs and then solve the problem. Learning mental models may be optimal under conditions
in which students are also troubleshooting, and possibly vice versa.

Section V 23

V. MECH as a Research Environment
MECH has a number of characteristics that make it useful for conducting research:

(1) MECH is easily configured for a wide variety of experiments. An experimenter can
vary instruction files, diagram files, description files, test-repair files, job files, help
files, and keystroke control files. All these variations allow-an experimenter to
construct an indefinitely large class of independent variables.

(2) MECH collects rich information on dependent measures. MECH stores every
keystroke plus its millisecond latency, along with complete information about the
screen the subject was perceiving at the time (i.e., diagram and menu information).
From this information, it is possible to reconstruct completely the conditions
subjects experience and the physical operations they perform. These data can be
used in a variety of ways to assess the effects of the independent variables in (1).

(3) MECH contains a timed true-false test that can be used to assess student's knowledge
at the end of a session. Many other tests can also be used to measure subjects'
knowledge at the end of a session, including free recall, cued recall, organizational
tests, and ratings. We have not implemented any of these other tests in MECH so
far and instead perform them with paper and pencil.

(4) MECH runs on IBM PC's, which are widely available as laboratory computers. As
described in Section VIII.C, we plan to extend MECH to a wider range of
processors such that it will be still more accessible to experimenters. One important
extension would be to have MECH run on battery-operated lap-top computers that
are highly transportable.

(5) MECH can be used to explore a wide range of issues on learning and troubleshooting.
MECH can be easily configured to perform experiments on ail the topics just
covered in Section IV. We do not review these topics here. Instead we suggest that
readers with experimental interests return to Section IV and reassess it from the
perspective of an experimentalist. Later sections also suggest a variety of ways in
which MECH can serve experimental goals.

Section VI

2. The SOURCE 2 Disk

Root Directory

Filename Description

move.inc MOVE menu module (MECH)

params4.inc parameters module for initialization (MECH)

readfalt.inc processes broken/working conditions for utility4.pas (MECH)

readjobs.inc reads job information for init4.pas (MECH)

repair.inc REPAIR menu module (MECH)

test.inc TEST menu module (MECH)

tutor.inc TUTOR menu module (MECH)

video.inc screen access utilities (MECH)
DIAGRAMS Directory

Filename Description

diagcomb.com
looker.com
setrv.com
show.com
snapshot.com

combines binary screen images into MECH's diagram file
displays binary screen image files

converts UPPERCASE fields in diagrams to inverse video
displays ASCII diagrams so that snapshot.com can capture them
captures ASCII diagrams

ASCII Diagram Binary Screen Image Description
0000.asc diagram.0 engine

1000.asc diagram.1 fuel system
2000.asc diagram.2 ignition system
3000.asc diagram.3 lubrication system
4000.asc diagram.4 cooling system
5000.asc diagram.5 cylinder assembly
6000.asc diagram.6 drive train
1200.asc diagram.7 fuel tank

1300.asc diagram.8 carburetor
1230.asc diagram.9 fuel pick-up system
2100.asc diagram.10 breaker points
2200.asc diagram.11 condenser
2300.asc diagram:12 magneto
2400.asc diagram.13 spark plug
2500.asc diagram.14 stop switch
2340.asc diagram.15 coil

3300.asc diagram.16 oil pump

620@&asc diagram.17 crankshaft
6300.asc diagram.18 - camshaft

Section VI

4. The DRIVE B Disk

Filename Description
joblist.1 example of a job list file for small engines
joblist.2 example of a job list file for small engines

showkeys.exe

11.fit

12.fit

13.11t

14 1lt

15.fit

16.11t

21.fit
jobs.hip
move.hip
repair.hip
test.hip
tutor.hip
kshelp1.ins
kshelp2.ins
ksstart.ins
ksstop.ins
tfstart.ins
tfstop.ins
11.job
12.job
13.job
14.job
15.job
16.job
21.job
kshelp.key
kshford.key
hford.par
kshelp.par
kshford.par
titest.tst

executable file for SHOWKEYS

example of a problem fault file for small engines
example of a problem fauit file for small engines
example of a problem fault file for small engines
example of a problem fault file for small engines
example of a problem fault file for small engines
example of a problem fauit file for small engines
example of a problem fauit file for small engines
example of a help file for JOBS (MECH)

example of a help file for MOVE (MECH)

example of a help file for REPAIR (MECH)

example of a help file for TEST (MECH)

example of a help file for TUTOR (MECH)

example of instructions for starting keystroke control
example of instructions for ending keystroke control
example of instructions for starting keystroke control
example of instructions for stopping keystroke control
example of instructions for starting the timed true-false test
example of instructions for ending the timed true-faise test
example of a job description file for small engines
example of a job description file for small engines
example of a job description file for small engines
example of a job description file for small engines
example of a job description file for small engines
example of a job description file for small engines
example of a job description file for small engines
example of a keystroke data/control file

example of a keystroke data/control file

example of parameter file

example of parameter file

example of parameter file

example of a true-false test for small engines

Section VI 29

In general, if you have trouble getting MECH to run, you might check the config.sys and
autoexec.bat files to see if they are configuring your system in a way that interferes with MECH.
If you see something that looks suspicious, delete it (after saving it somewhere), reboot your
computer, and try to run MECH. If MECH now runs, what you deleted is the problem. In this
case, you might want to construct a boot disk specifically for using MECH, which does not
contain your normal config.sys and/or autoexec.bat file. See Section VI.C.2 for one line you
may need to include in your config.sys file.

C. Setting Up Disks and Drives

In setting up disks and drives, the following clusters of files must not be split. Files within these
clusters must not be placed in different directories:

Cluster 1
All the files on the DRIVE A disk (MECH program files).

Cluster 2
All the parameter files (*.par) on the DRIVE B disk.

Cluster 3

All the help files (*.hlp), instruction files (*.ins), and keystroke control files (*.key)
on the DRIVE B disk.

Cluster 4

All the job files (joblist.*, *.job, *.flt) and the true-false test (tftest.tst) on the
DRIVE B disk.

Cluster 5
All the keystroke data files and all the true-false data files that MECH produces
(i.e., *.key and *.tf). Nosuch files currently exist on any of your disks (although the
keystroke control files are technically keystroke data files).

The files within each cluster must always be in the same directory. For example, you could not
put the HELP files from cluster 3 in one directory and the instruction files from cluster 3 in
another directory. Note, however, that these clusters can be combined into larger clusters if so
desired. For example, you could combine clusters 2, 3, 4, and S into a single directory if you
wanged (and as we have done on the DRIVE B disk).

1. Running MECH from floppy disks. The first thing you should do is create back-up
copies of the original MECH disks on four additional floppy disks. If you are using a machine
with 1.2 MB floppies, you can backup up the original disks on a single disk.

When you want to run MECH, place the DRIVE A disk in drive A of your machine and place
the DRIVE B disk in drive B. You are now ready to run MECH.

Section VI 31

If you are using any other configuration of drives and disks, you will have to edit the respective
parameter files before you can run the demonstrations. This is actually quite simple, as
described in Section VLF. If you are using some other configuration and want to run the
demonstrations, read Section VLF first. Then change the parameter files described in the
demonstrations below to handle your configuration. This will simply amount to specifying the
drives where MECH can find the files it uses for the demonstrations.

1. Demonstration 1: Overview. This demonstration first provides examples of the MOVE .
and TUTOR commands. It then accesses a job and repairs the engine. To run this
demonstration, perform the following steps:

Step 1. Be sure that the root directory is the default directory on drives A and B.
Step 2. Log onto drive A.

Step 3. Type "mech".

Step 4. When prompted for the drive containing parameter files, type "b".

Step 5. When presented with a list of parameter files, type the number corresponding to
the parameter file called "kshford.par".

Step 6. When the parameter screen appears, type "29".

Do not change anything in the parameter screen, unless you have read Section VLF and
are assigning new drives to fit your configuration.

Step 7. When the MECH logo appears (i.e., a spark plug at the top and the message
"Please wait for the instructor" at the bottom), hold down the <ALT > key and type "200"
on the numeric key pad. You must type the "200" on the numeric key while simultaneously
holding down the <ALT> key. This obscure sequence is used to prevent students and
subjects from controlling MECH at critical points (see Section VLE. for details).

Step 8. MECH will take about 60 sec to initialize. Subsequently, you will receive a page
of instructions, which will tell you how to proceed through the demonstration (these are
the instructions to start keystroke control described earlier). Note that the demonstration
is being controlled by a keystroke file, which we constructed during a previous MECH

session. When the session is over, you will receive the instructions that end keystroke
control.

Step 9. The MECH session will end automatically once you have completed the session.

2. Demonstration 2: The HELP utility. This demonstration takes you through MECH's
HELP utility. If you want to learn about the MOVE, TUTOR, JOBS, TEST, and REPAIR

Section VI

(9]
(L3

We use this obscure stop sequence so that students can't end MECH themselves, either
intentionally or accidentally. As described in Section VI.H, this same key sequence also
initiates the timed true-false test.

F. Setting Up Parameter Screens and Files

Once you start MECH, it asks you for the drive containing the parameter files. Enter the letter
for the drive (see Section VI.C) followed by <ENTER >. Do not follow the letter with a colon
(as occurs when setting the default drive in DOS).

MECH then produces a list of all the parameter files it can find on the drive you entered. To
select a parameter file, type the number to the left of the filename, followed by <ENTER>. If
you want to construct a completely new parameter file, select the number for that option.

MECH then presents the parameter screen. An example of a parameter screen is shown in
Figure 3, where the parameter options are shown in UPPERCASE, and the values for these
options shown are in lowercase. To set each option, simply enter its number when the prompt
shown at the bottom of Figure 3 is on the screen. We next describe how to set each option.

1-CURRENT PARAMETER FILE. If you selected a parameter file when you
initiated MECH, the name of this file will fill Field 1, and any values stored for this file
will fill other fields on the screen. Note that there is actually a parameter file called
"hford.par” on the DRIVE B disk. However, the values in this file are not the same as
those shown in Figure 3.

If you selected the option to create a new parameter file, Field 1 and all other fields will
be blank. Your first step in creating a new parameter file should be to enter a name for
the parameter file. To do this, type "1" followed by <ENTER > to signal that you want to

enter a value for Field 1. Then type the name of the new parameter file followed by
<ENTER>.

2-NAME. This field contains the name of the person performing the MECH session.
This field can be left blank, given it currently performs no function in MECH. As
described in Section VIILA, future versions will store this information in all data files.

3-DATE. This field contains the date of the MECH session. This field can be left blank,
given it currently performs no function in MECH. As described in Section VIILA, future
versions will store this information in all data files.

4-CONDITION. If the person performing the MECH session is in an experimental
condition, the name of this condition can be entered in this field. This field can be left
blank, given it currently performs no function in MECH. As described in Section VIILA,
future versions will store this information in all data files.

Section VI 3

tn

5-NUMBER. If the person performing the MECH session has a subject number, it can
be entered in this field. This field can be left blank, given it currently performs no
function in MECH. As described in Section VIILA, future versions will store this
information in all data files.

6-RESULT FILE DRIVE. This drive contains the files in cluster 3 (see Section VI.C).
Specifically, MECH will store the keystroke data file and the true-false data file from the
current session in the directory assigned to this drive.

7-RESULT FILE PREFIX. The value for this field becomes the prefix of the
keystroke data file and true-false data file that MECH produces for this session. MECH
automatically assigns ".key" and ".tf" as the extensions for these files, respectively. For this
reason, do not add an extension to the result file prefix, or MECH will not operate
properly. Both result files will be stored on the drive specified in Field 6.

8-KEYSTROKE CONTROL? If all or part of this session should be under keystroke

control, enter "y". If all of this session will be under user control, enter "n".

9-TRUE-FALSE TEST?. If the timed true-false test is to occur at the end of this
session, enter "y". If not, enter "n".

10-PROBLEM FILE DRIVE. This drive contains the files in cluster 4 (see Section
VI.C). Specifically, MECH will look for job files, fault files, joblist files, keystroke control
files, and the true-false test file in the directory assigned to this drive.

11-PROBLEM FILE. This field contains the name of the file listing the jobs to be
performed during troubleshooting (i.e., the joblist file described in Section VIL.D.3). If
troubleshooting will not be performed, this field must still contain a filename, or the
program will not run.

12-OPTIMAL WAGE. This is the optimal amount that students can earn per problem.
To see how it is used in computing a student's actual wage, see Section I[II.D. Note that
the value for this field must include a decimal.

13-DELAY FACTOR. The value of this field determines the pause between each
keystroke and subsequent screen. Note that you should enter an integer value and that it
represents milliseconds. If you want the screen to change immediately following each
keystroke command, enter "0" or some other small number (e.g., "30" works well). If you
want the delay to be longer, enter a larger number (e.g., "2000" produces a delay of 2
seconds). Note that long values in the range of "2000" are necessary when using keystroke
control. If the value is short, students can not see which options in the menus have been
selected. When the values are long, students have time to see which option has been
selected, thereby providing them with greater opportunity to learn.

Section VI 37
28-SAVE THE CURRENT SETTINGS. If you have created a new parameter file,

or if you have edited an old parameter file, select this option to save your work. The next
time you initiate MECH, you can quickly reinstate these parameters by selecting the
parameter file currently named in Field 1.

29-CONTINUE MECH. If you do not need to change any parameter, or if you are
through editing parameters, select this option to begin a MECH session. If you edited
parameters, you do not have to save them before continuing.

After you select this option, MECH will present the screen that contains its logo. At the
bottom of this screen will be a message to wait for the instructor. When you are ready to
continue the MECH session, hold down the <ALT> key and simultaneously type "200"
on the number pad of your keyboard (see Section VIL.E for details).

After you type <ALT> 200, MECH will spend about one minute initializing. If MECH is
under user control, MECH will then present the 0000 diagram and the main menu. From
this point on, you can select any option you wish. If MECH is under keystroke control,
you will receive the instruction file named in Field 23.

30-EXIT MECH. If you do not wish to continue the MECH session, selecting this
option will return you to the DOS prompt.

Important note about parameter files! You can not rename a parameter file with the
DOS "rename” command and expect the parameter file to work. All creation, editing, renaming,
and saving of parameter files must be done within MECH.

G. Using Keystroke Control

To use keystroke control, you must first create a keystroke data file under user control. After
you have finished creating a keystroke data file under user control, you need to move the file to
the directory that contains the files for cluster 4. You can then use this file to control MECH on

any subsequent occasion. To do so, you must first set up the parameter file as just described in
Section VLF:

Step 1. If you wish to Have complete keystroke control, Enter "y" in Field 8 of the
parameter screen.

Step 2. If you wish to have split control, Enter "y" in Fields 8 and 14 of the parameter
¥ screen.

Step 3. Enter the name of the keystroke control file in Field 22 of the parameter screen.

Step 4. Specify names for the keystroke instruction files in Fields 23 and 24.

Section VI 39

Step 4. Return to the MAIN menu (press F10 from whatever menu you are in).

Step 5. Once you have MAIN menu on the screen, hold down the <ALT> key and

simultaneously type "200" on the number pad of your keyboard (see Section VLE for
details).

Step 6. The instructions named in Field 26 of the parameter screen will appear.

Step 7. Once the student has read these instructions, MECH initiates the true-false test.
The instructions we have included in the tfstart.ins file on the DRIVE B disk describe how
to perform MECH's timed true-false test.

Step 8. When MECH has finished the true-false test, it will save the results and present
the instructions named in Field 27 of the parameter screen.

Step 9. When MECH has finished presenting these instructions, it returns to the DOS
prompt.

Details on the data stored for the timed true-false test are describéd in Section VILG.
I. Using MOVE, TUTOR, JOBS, TEST, REPAIR, and HELP

We do not describe how to use the MOVE, TUTOR, JOBS, TEST, and REPAIR utilities here.
Everything you need to know about how to use these utilities is described in the HELP files we
have constructed, namely, move.hlp, tutor.hlp, jobs.hlp, test.hlp, and repair.hlp, all of which
reside on the DRIVE B disk.

You can read these files in several ways. First, you could raun Demonstration 2 in Section
V1.D.2, which presents all the HELP files under keystroke control. Second, you could run
Demonstration 3 in Section V1.D.3 and explore the HELP utility under user control. Third, you

could use the DOS "type" or "print" commands to review the contents of the HELP files on the
DRIVE B disk.

J. Using SHOWKEYS to Read a Keystroke File
MECH stores its data files in a compact form to minimize storage space. As a result, these files
are not very readable (although they are readable by data analysis programs). To make

keystroke files readable to the human eye, we constructed SHOWKEYS.EXE, which resides on
your DRIVE B disk.

To use SHOWKEYS, perform the following steps:

Step 1. Log onto the directory containing SHOWKEYS.EXE.

Section VII 41

VII. Authoring or Altering MECH's Input Files
The instructions in this section allow you to:

(1) author entirely new files for a domain other than small engines
(2) alter files we have constructed for small engines

We generally assume throughout this section that the reader is interested in authoring new files.
However, everything we say also applies to altering old files. If you are only interested in using
the configuration of MECH that we have developed for small engines, and if you do not wish to
change it in any way, then you can skip this section. If you plan to use our configuration, you
may want to construct your own jobs for troubleshooting, your own instruction files, and your

own true-false test. If so, then you should probably read subsections D, F, and G, respectively,
in Section VII.

Most of the work in configuring MECH for a new domain involves authoring the files we
describe in this section. More importantly, the success of a MECH application will probably
rely to a large extent on how well these files are constructed. As described later in Section
VIILJ, we hope to develop an authoring environment at a later time to facilitate this process.

Please note the following points about working with MECH input files:

(1) When constructing or altering files with a text editor, always be sure to save the files
unformatted. If MECH finds any formatting commands in an input file, it will
probably crash. If MECH crashes, you might check your files for formatting.

(2) Once you create or alter one of MECH's files, be sure to place it in the proper
directory where MECH can find it. See Sections VI.C and VLF for relevant
instructions. If MECH can't find a file it needs, it tells you and then terminates.

(3) We do not specify the formats for files specifically. For example, we typically do not
state exactly how many spaces must lie between adjacent fields in a line. Instead, we
assume that authors will determine the appropriate formats from the example files
we have constructed for MECH. The proper format is readily discernable from
these examples (more discernable than if we tried to describe it).

A. Diagram File for MOVE

Thi; lengthy section contains instructions for creating and editing MECH's diagram file.
Because MECH's utilities for MOVE, TUTOR, TEST, REPAIR, and JOBS are hierarchically
organized around a common addressing scheme, critical topics in this section include
hierarchical organization and addressing. Sections 2 and 3 below describe how to construct
such a scheme for your application.

Section VII 43

Table 1 ‘
A Design Hierarchy and Addressing Scheme for Small Lawn Mower Engines

Diagram External Relations
System/Terminal Component Address Order Inputs Qutputs
ENGINE 0000)
FUEL SYSTEM 1000 1 0]
air filtter 1100
FUEL TANK 1200 7 P.Q
tank 1210
gas cap 1220
FUEL PICK-UP SYSTEM 1230 9 P
tank 1231
fuel pipe 1232
fuel pipe filter 1233
fuel flow ball 1234
metering holes 1235
high-speed adj. screw 1236 v
CARBURETOR 1300 8 P.Q @]
chamber 1310
choke 1320
venturi 1330
throttle valve 1340
low-speed adj. screw 1350
IGNITION SYSTEM 2000 2 E,C N
BREAKER POINTS 2100 10 E,l LM
plunger 2110
moving arm 2120
spring 2130
moving point 2140
stationary point 2150
CONDENSER 2200 11 M
housing 2210
gasket . 2220
spring 2230
tin foil 2240
insulation 2250
. MAGNETO 2300 12 CL 1,J,K
flywheel 2310
magnet 2320
armature 2330
COIL 2340 15 L fJ.K
housing 2341
primary wire 2342

secondary wire 2343

Section VII ‘ 45

(2) Each component at levels two through four can only be decomposed into nine
sub-components each. In Table 1, "ENGINE" decomposes into six systems
(e.g., FUEL SYSTEM, IGNITION SYSTEM). We could have decomposed
"ENGINE" into three more systems at the most. Similarly, the largest number
of components the carburetor could have had would have been nine (it
actually had five).

As described in Section VIILE, later implementations will not be constrained in these two
ways.

It is important to note that one can be quite creative in designing hierarchies. For
example, imagine you wanted to tutor people on electronic circuits at two levels: a
qualitative level and a physical level (White & Fredericksen, 1986). The root of your
hierarchy could have two branches, one that presents qualitative structure and one that
presents physical mechanisms. As another example, imagine you want to train people
about three devices. The root of your hierarchy could have three branches, one that
presents a subhierarchy for each device. As still another example, imagine you wanted to
teach people about the structure of a device and procedures for repairing it. The root of

your hierarchy could have two branches, one that presents structure and one that presents
procedures.

Alternatively, you could construct completely separate hierarchies for different purposes.
Instead of only using one hierarchy, you would construct several, each of which could be
stored in a different diagram file for use in different sessions. For example, you could
load the hierarchy for a qualitative level in one session and load the hierarchy for a
physical level in another session.

Step 2: Determine internal relations. Once you have constructed the hierarchical
decomposition of your domain, you need to determine the internal relations within each
decomposable system (in Table 1, decomposable systems are shown in UPPERCASE).
Figure 2 in Section II1.C.2 provides examples of internal relations. In the ignition system
diagram, for example, the magneto sends high voltage current to the sparkplug. In the
magneto diagram, movement of the magnet produces magnetic reversal in the coil.

At this point, it may be useful to sketch out each diagram, including its components and
the internal relations between them. You may want to draw your diagrams along the lines
. of those shown in Figure 2. Or you may want to draw them in some other way.

Step 3: Determine external relations. For each diagram you sketch, identify the
following two kinds of external relations: (1) inputs the system receives from other parts
of the system, and (2) outputs the system sends to the rest of the system. All the external
relations that we use in our current implementation are shown in Table 1. Each relation
needs to have a label, which must be a capital letter (as described in Section VIILA, this
constraint will be removed in later versions). Consider an example from Table 1. P,

Section VII 47

(1) The maximum length of a diagram file is 18 lines. This is because the menu system
uses the remaining lines at the bottom of the screen. The number of lines in a
diagram can be less than 18.

(2) The maximum length of any single line within a diagram file is 79 characters.

(3) DO NOT name any of your ASCII files "diagram". The binary screen images created
from these files in Section VIL.A.6 will be given file names of "diagram.#" by the
SNAPSHOT.COM program. Using this name for any ASCII file will create
unwanted problems.

(4) We suggest that you name your ASCII diagram files as follows: Use the address of
the diagram (from your addressing scheme) for the prefix of the filename. For the
suffix, use "asc" to remind yourself that these are ASCII files. For examples of such
filenames, see the names for the ASCII files in Section VI.A.2 (e.g., 0000.asc,
1000.asc, 6200.asc)

(5) Within each diagram, the name of any component that decomposes should be in
UPPERCASE. In Figure 2, for example, the magneto in the ignition system
diagram decomposes into the diagram for the magneto below. Consequently,
MAGNETO is in UPPERCASE in the ignition system diagram. As described in
Section VII.A.7, UPPERCASE names in diagrams will appear in inverse video.
This makes them more salient in the diagrams, thereby making it clearer to subjects
which components decompose and which do not.

Note that extended ASCII characters can be used to construct lines, corners, t-junctions, arrows,
shading, etc. in your diagram files. Use of the extended character set can produce surprisingly
good diagrams. The trick is finding a text editor that will allow you to enter them into a file.
Microsoft WORD allows a user to enter extended ASCII characters by conjoining the use of the
_<ALT> key and the numeric key pad. For examples of how ASCII characters can be used to
construct diagrams, see the diagrams we constructed for our current configuration of MECH.

As described in Section VIILD, we plan to add bit-mapped graphics to MECH in the future.
Once we have done that, the basic routine we describe in Section VII.A for constructing
diagram files should be much the same. The only difference would be that diagrams are
constructed with a graphics editor instead of with a text editor.

Onge you have constructed your ASCII diagrams, your working directory should contain the five
utility files described in VIL.A.1 and the ASCII diagrams you created with your text editor.

5. Order the diagrams. Next you must calculate the order of the diagrams for your
configuration of MECH. To see how we ordered the diagrams for small engines, see the
"Diagram Order" column in Table 1. You may be able to discern the ordering principle more
easily from seeing how diagrams are ordered in Table 1 than from the more abstract procedure
we describe shortly.

Section VII 49

decomposable systems that have not been added, namely, 1200 and 1300. If the
systems from 1000 have already been added, assign the current node to be 2000,
assuming its decomposable systems have not been added yet. If they have, continue
on across the descendents of 0000, seeing if any have decomposable systems that
have not been added. Go to Step 1.

Step 2b. If the answer is "no" and the current node is 0000, you are done. If the
answer is "no" and the current node is anything but 0000, then change the current
node to the superordinate of the current node. For example, if the current node is
1200, assign its superordinate, 1000, to be the new current node. Go to Step 1.

As you construct the diagram order, write the position of each diagram next to its address. This
information will be necessary in later steps. For an example, see Table 1.

6. Create binary screen images. The next step is to create a binary screen image for each
of the ASCII diagrams that you created in Section VIL.A.4. In creating these binary screen
images you will use the SHOW.COM, SNAPSHOT.COM, and SETRV.COM programs that
reside in your working directory.

Step 1: Load SNAPSHOT.COM into memory by simply typing "snapshot” at the DOS
prompt. Because SNAPSHOT is a memory resident program, you only need to run it
once during a session in which you create binary screen images.

Step 2: This step s iterative, being repeated once for each ASCII diagrani that you want
to convert to a binary screen image. For example, if you want to convert 19 ASCII
diagrams to binary screen images, you would repeat this step 19 times.

Most importantly, you must perform these conversions according to the diagram order you
just constructed in Section VILA.S. You must start with the first diagram in the order,
and continue with the remaining diagrams until the last diagram in the order has been
converted. If you do not convert diagrams in the correct order, MECH will not run
properly.

To convert each ASCII diagram, type "show filename", where filename is the full name of
the ASCII file that you wish to convert to a binary screen image. For example, type "show
0000.asc" to convert the ASCII file for the engine to a binary screen image. This displays
the file on the screen. Note that when the diagram is displayed, no DOS prompt will be

v present. Once the diagram has been displayed, SHOW will pause, waiting for further
input from you. At this point, press the <CTRL> and <BREAK> keys simultaneously.
This will cause SNAPSHOT, which is resident in memory, to create a binary screen image
of the displayed ASCII diagram. ’

Repeat the complete process outlined in this step until all ASCII diagrams have been
converted to binary screen images. As SNAPSHOT creates each new binary screen
image, it automatically assigns a filename to the new image. The first binary screen image

Section VII ‘ 31

(1) The conversion utilities.

(2) The ASCII diagrams you created with your text editor.

(3) The binary screen images, with inverse video, that you created with SHOW,
SNAPSHOT, and SETRV.

8. Create a single diagram file. The binary screen images must now be combined into a
single data file for use by MECH. This is done through the use of the DIAGCOMB.COM
utility, as outlined next.

Step 1: At the DOS prompt, type "diagcomb" followed by <ENTER>.

Step 2: When DIAGCOMB's menu appears, select option "c" to implement
combination.

Step 3: This is an iterative step that must be performed once for each diagram. After
you press "c" in the previous step, diagram.0 will appear on the screen, and a counter will
appear below it. To incorporate diagram.0 into the final diagram file, press <ENTER>.
At this point, diagram.1 wiil appear on the screen. To incorporate this diagram into the
final diagram file, press <ENTER >. Continue with this sequence until all diagrams have

been incorporated into the final diagram file
Step 4: Once combination has finish, select the "e" to end the session.

Your working directory will now contain a file called "diagram.dat". This is the file that MECH
uses to present diagrams. Note that the name of the diagram file MECH uses must be called
"diagram.dat." As described in Section VIIL.A, the name of this file will be a variable in future
implementations. Be sure to place the "diagram.dat” file in the directory that contains your
cluster 1 files (see Section VI.C)

9. Editing diagrams. If you decide to change a particular diagram once you have created
the diagram.dat file, first edit the ASCII file for the diagram. Then convert it to a binary screen
image, using SHOW and SNAPSHOT, and then convert its UPPERCASE strings to inverse
video, using SETRV. Finally, run DIAGCOMB to integrate your edited diagram into a new
diagram.dat file.

10. Viewing screen images. Whereas DIAGCOMB allows you to view binary screen
images within diagram.dat, the LOOKER.COM utility allows you to view individual binary
screen images.

N

Step 1. At the DOS prompt, type "looker" followed by <ENTER >.

Step 2. Once LOOKER has been loaded, it will prompt you for a screen mode. Select
option two for 80 column text.

Section VII 53

Table 2
Example of an Entry for a Decomposable System in the tutor.dat File

DIAGRAM =iubrication system

ADDRESS =3000

SPECIFIC DESCRIPTIONS=123

NODES BELOW=3

DECOMPOSITIONS =3

INPUTS =F-6300 R-6000

OUTPUTS =S-5000 T-6000

GENERAL DESCRIPTION =LUBRICATION SYSTEM

The lubrication system minimizes friction and wear on engine components,
thereby maintaining optimum operating conditions. At one point in the
rotation of the camshaft, oil is pulled into the oil pump through suction.
At a subsequent point in rotation, oil is forced out of the oil pump and
into the intake port. Qil is then forced out of the port injector in the
form of a mist. This mist falls onto the internal surface of the cylinder
assembly and onto the drive train to keep them lubricated.

1=INTAKE PORT

The intake port is a small area at the end of the oil line just before the
port injector. It collects oil that is to be forced out of the port
injector and onto the cylinder assembly and drive train areas.

2=PORT INJECTOR

The port injector is a small nozzle on the side of the intake port.
Because of the nozzle's small opening, oil forced out of it is turned into
a mist. Consequently the port injector turns the oil into a form suitable
for distribution over the internal surface of the cylinder assembly and
over the drive train.

3=0IL PUMP

The oil pump transfers oil from the crankcase to the intake port. Rotation
of the drive train causes oil to be pulled into the pump from the
crankcase, where oil is stored. Further drive train rotation forces oil

out of the pump and into the intake port.

Section VII

N
n

specific description (see the SPECIFIC DESCRIPTIONS field). Consequently, the
lubrication system has specific descriptions for the intake port, port injector, and oil pump.

Important note! The description just described can contain no blank lines. When a
blank line is encountered, MECH assumes that the description has ended.

2. Create entries for terminal components. Table 3 shows an example of an entry for a
terminal component. As can be seen, only four fields need to be specified:

DIAGRAM must contain "none", because terminal components do not have their own
diagrams.

ADDRESS contains the address of the terminal component.
NODES BELOW is 0, because this is a terminal component.

GENERAL DESCRIPTION contains the name of the terminal component on the

same line.

Note that no general description of the terminal component follows. This is because the
specific description for this component exists in the entry for its superordinate. For example,
the specific description for the intake port is in the entry for the lubrication system (see Table
2), : :

3. Order the entries. Organizing entries is similar to organizing diagrams, as discused in
Section VIL.A.S. To see how we ordered the entries for small engines, see the tutor.dat file on
the DRIVE A disk. You may be able to discern the ordering principle more easily from seeing
how entries are ordered in tutor.dat than from the more abstract procedure we describe shortly.

As can be seen in tutor.dat, the entry for engine is first, followed by entries for the six systems
that compose it at the next level down (fuel, ignition, lubrication, cooling, cylinder, drive train).
The next entries are for the components of the fuel system, beginning with an entry for the gas
cap, which is a terminal component. The next two entries are for the fuel tank and carburetor,
thereby exhausting the immediate descendents of the fuel system. The next entries are for the
immediate descendents of the fuel tank, followed by the immediate descendents of the fuel
pick-up system, and finally by the immediate descendents for the carburetor. At this point,
entries for the ignition system begin to be added.

‘
More precisely, the general procedure for ordering entries is as follows:

Step 0. Assign 0000 to be the "current node." Also create 0000 as the first entry in
tutor.dat.

Section VII 37

Step 1. For the current node, determine if entries for its immediate descendents have
been placed in tutor.dat. For example, if the current node is 0000, determine if entries for
1000, 2000, 3000, 4000, 3000, and 6000 have been added.

Step la. If the answer is "no," create an entry for each immediate descendent, in
numerical order. If an immediate descendent is decomposable, enter information as
described in Section VIL.B.1 above. If an immediate descendent is a terminal
component, enter information as described in Section VII.B.2 above. For example,
if the current node is 0000, first add 1000, then 2000, then 3000, then 4000, then
5000, and then 6000. Exhaustively add all components that are immediate
descendents before continuing to Step 2.

Step 1b. If the answer is "yes," then go to Step 2.

Step 2. Determine if any entries remain to be added from the immediate descendents of
the current node at any level. For example, if the current node is 0000, determine if any
entries have not been added for descendents of 1000, 2000, 3000, 4000, 5000, or 6000 at
any level.

Step 2a. If the answer is "yes," change the current node to the first decomposable
descendent having entries that remain to be added. For example, from 0000, assign
the current node to be 1000, because it is the first decomposable descendent having
entries that remain to be added, namely, 1100, 1200 and 1300. If all components
from 1000 at all levels have been added, assign the current node to be 2000,
assuming it has descendents with entries that remain to be added. If all the entries
for 2000 have been added, continue on across the descendents of 0000, seeing if any
have entries have not been added. Go to Step 1.

Step 2b. If the answer is "no" and the current node is 0000, you are done. If the
answer is "'no" and the current node is anything but 0000, then change the new
current node to the superordinate of the current node. For example, if the current
node is 1200, assign its superordinate, 1000, to be the new current node. Go to Step
1.

It is essential that you save the tutor.dat file unformatted. If your text editor adds formatting
commands to the file, MECH will not be able to read it properly.

C. ‘Description File for TEST and REPAIR

This next file contains the tests and repairs used by TEST and REPAIR. The name of this file
must be "testrep.dat”. As described in Section VIII.A, the name of this file will be a variable in
future implementations. A fragment of the testrep.dat file that we constructed for small engines
is shown in Table 4.

There are eight constraints on designing and ordering entries in testrep.dat:

Section VII

hn
O

(1) The maximum number of tests/repairs is three per component. As described later in
Section VIILE, we plan to remove this constraint in future implementations.

(2) Tests and repairs are yoked: For every test in testrep.dat, there must also be a repair
(or lack of repair, as described next).

(3) There may be no repair for a test. In general, there may be no repairs for tests of
high-level systems because the repairs must take place at the level of more specific
components. Nevertheless, a description of some sort must be included for these
"non-repairs" in entries where they occur (e.g., see repair #1 for the carburetor).

(4) A cost must be included for each test and repair. These are used to calculate payoffs
to subjects. If there is no repair for a test, the repair receives a cost of § .00.

(5) Tests specify whether the engine needs to be "on", "off", or "either" when they are
performed. Repairs similarly specify whether the engine needs to be "on", "off", or
"either", assuming a repair exists. If a repair does not exist, it receives a value of
"none" for the engine's on/off status (e.g., see repair #1 for the carburetor).

(6) The description of a test can be up to 2 lines long, with each line containing a
maximum of 72 characters and ending with a return. The description of a repair can
also be up to 2 lines long, with each line containing a maximum of 72 characters and
ending with a return. As described in Section VIILE, we plan to remove the
constraints on number of lines in future implementations.

(7) Each line of information in an entry must be followed by a line containing an "*" to
separate it from the next line of information.

(8) Entries in the testrep.dat file must be ordered according to the procedure described
for tutor.dat in Section VIL.B.3.

To see the basic format for constructing entries in testrep.dat, consider the tests and repairs for
the carburetor in Table 4. More specifically, each entry should be structured as follows:

Line 1 contains the following three pieces of information:
(1) the address of the component (1300)
(2) the number of yoked tests/repairs (2)
(3) the name of the component (carburetor).

Line 3 contains the following five pieces of information:
(1) the number of the test/repair (#1)
(2) the cost of the test (dcost=3 4.00); the "d" stands for "diagnostic"
(3) whether the engine must be "on", "off", or "either" to run the test ("oft™)
(4) the cost of the repair (rcost=$ 000.00)

Section VII 61

Table 5
Examples of Job Files (21.job, 11.job)

PROBLEM = 21

NAME = fuel system tune up, adjust high- and low-speed adjustment scre:
IDEAL COST = $ 16.00

%*

CUSTOMER = 1

Owned by the Ann Arbor Parks Department.

MODEL = 1

Made by Tecumseh. Heavy-duty model.

AGE = 1

About 1 year old.

USE = 1

Used five days a week to cut lawns in city parks.
MAINTENANCE = 1

Has received no maintenance in 1 year.

CURRENT PROBLEM = 2

Engine stalls when running at low speeds.

Engine doesn't go fast enough at high speeds.
PREVIOUS PROBLEM = 1

None.

OBSERVATIONS = 1

Operator thinks that the fuel system might be out of adjustment.

PROBLEM = 11

NAME = malfunction at spark plug -> broken secondary wire (explicit #1)
IDEAL COST = $ 32.00

*

CUSTOMER = 1

Owned by the Sea Palms Apartment Complex.

MODEL = 1

Made by Craftsman. Made in the United States. Discount model.

AGE =1

About 1 year old.

USE =0

MAINTENANCE = 0

CURRENT PROBLEM = 1

The engine will not start.

PREVIOUS PROBLEM = 0

OBSERVATIONS = 2

A mechanic friend of the customer checked out the engine a little and
found that the spark plug is not producing a spark.

Section VII 63

field will not appear in any form when MECH runs. From the student's perspective.
these fields will not exist.

As described in Section VIILA, later versions of MECH will allow job files to
contain optional fields of any description, not just these eight.

Each optional field is defined by a first line that (a) defines the field, and (b)
specifies how many lines will subsequently constitute its value. Consider the field
for CURRENT PROBLEM in Job 21. "CURRENT PROBLEM =2" defines the
field and specifies that two lines for it follow. In Job 11, when "0" follows the name
of a field, this means that neither the field nor the value will appear in MECH's job
descriptions. Only those fields and values having at least one line are shown.

The value for each field can contain any number of lines. Each line must be a
maximum of 79 characters and end with a return.

2. Fault files. An example of a fault file is shown in Table 6. This is the file, 21.flt, on your
DRIVE B disk. Additional examples of fault files reside on the DRIVE B disk as well.

The following six constraints apply to constructing a fault file:
(1) Analogous to job files, the maximum number of fault files is 1000.

(2) The prefix of each filename must always be a number from 0 to 999. The extension of
each filename must always be ".flt". Examples of filenames include 11.flt, 21.flt,
142 11t, etc.

(3) The prefix of each fault file should be the same as the prefix of the corresponding job
file. For example, 11.job and 11.flt form a pair, as do 21.job and 21.flt. If you do not
use identical prefixes in this manner, MECH will not operate properly.

(4) The first five lines shown in Table 6 must begin every fault file. The subsequent lines
are optional, as described in Sections VIL.D.2.a and VIL.D.2.b below.

(5) Line 1 contains the number of faults for the current problem. A fault corresponds to
a particular repair of a particular component that must be made before the problem
is solved. A problem can have any number of faults.
' (6) Line 2 contains the specific repairs that must be made to eliminate the n faults
introduced in Line 1. Each repair is indexed by:

(a) the address of the component that needs to be repaired
(b) the number of the repair for that component that needs to be pertormed.

Section VII 63

For example, "1236 2" means that the high-speed adjustment screw in the fuel-pick
up system must be opened to repair the first fault (i.e., test #2 of component 1236).
"1350 2" means that the low-speed adjustment screw in the carburetor must be
opened to repair the second fault (i.e., test #2 of component 1350). Line 3 must

Ny

contain an "*".

As each needed repair is made, MECH "erases" that repair from what is currently
wrong with the system. This changes the productions that fire when the student
starts the system and runs tests, as described in Sections VIL.D.2.a and VIL.D.2.b
below.

Important note! If a component is duplicated in your system hierarchy, you
probably should not assign it as a fault during troubleshooting. Consider the
flywheel, which is duplicated several times in our hierarchy for small engines. If the
flywheel is at fault, one or all of the nodes for the flywheel could be specified as
faults. If only one is specified, then tests on different nodes for the flywheel would
yield different results, which is obviously inappropriate. Worse yet, if all flywheel
nodes are specified as faults, then the flywheel would have to be repaired several
times before the problem was solved. This, too, is clearly inappropriate.

One way to handle this problem would be to designate one node as the one that
subjects test and repair. For all other nodes, the Test #1 and Test #2 descriptions
would state that tests and repairs could not be done for the current diagram. In
addition, these descriptions would direct the user to the one diagram where the tests
and repairs could be performed. For example, the Test #1 message could state,
"The flywheel can not be tested here. Go to the crankshaft diagram to test the
flywheel." This is how we have handled repetition for the flywheel and (fuel) tank in
our current configuration for small engines.

(7) Line 4 must contain the number of test messages, where each test message is a
production. The number of productions (test messages) is unlimited. There are two
different types of productions:

(a) "System productions" that apply to starting the system (described in Section
VILD.2.a below).

(b) "Test productions"” that apply to running particular tests on particular
v components (described in Section VIL.D.2.b below).

(8) Line 5 must contain an "*".
a. System productions. System productions apply to starting the system. Certain tests and

repairs may require that a student start the system before performing them (see Sections II.C.5
and II1.C.6). Furthermore, every time a student makes a repair, MECH requires that the

Section VII 67

(c) Line 2 specifies the "working conditions” of the production. If the production is to
fire, it's working conditions must match the current state of the engine. In other
words, the production must find that the tests specified by these conditions do not
reveal faults. To do this, it simply looks up the current list of faults for the engine.
The maximum number and format of working conditions are the same as for broken
conditions.

In general, either working or broken conditions alone are sufficient to specify the
conditions of a production fully. We have included both so that users have more
flexibility in designing problems.

(d) Line 3 and Line 4 (if used) specify the "action" or message that the production
produces. If the production's working and broken conditions are met fully, the
production "fires" by presenting its message to the student. A message can contain a
maximum of two lines, each containing a maximum of 79 characters and ending by a
return. As described in Section VIILE, the constraint on number of lines will be
removed in future implementations.

b. Test productions. Test productions apply to performing tests. Every time a student
attempts to run a test, MECH searches for productions that apply to the test. If one matches
the current fault state of the system (as just described in Section VII.D.2.a), then it fires its
message. If no productions fire, then MECH assumes that the test found nothing wrong and
responds with a default message stating that the test found no fault.

A general rule of thumb is that test productions need to be written for :
(a) Components whose tests exhibit faults (e.g., the last two productions in Table 6).

(b) Components whose tests are affected by existing faults (e.g., the productions for 1000
2 and for 1200 2 in Table 6). Note that 1000 2 and 1200 2 are not faults themselves.
Instead the fuel system (1000) and the carburetor (1200) are malfunctioning
because of other faults that exist in the system.

Knowing which productions of type (b) to construct is the trickiest part of authoring MECH
files. In our examples, we simply reasoned intuitively about faults to produce these productions.
For example, we assumed that improperly adjusted low- and high-speed adjustment screws
would affect the carburetor and fuel system and that these faults would affect no other test in
the system. In some cases, producing productions in this intuitive manner may be sufficient for
con$tructing an application.

Other applications, however, may require that test productions be designed more rigorously.
You may need to consult an expert or a text to determine which non-broken components of a
system are affected by a particular fault. As we discuss in Section VIILL, if an actual simulation
of a system exists, it can be used to define these productions. Moreover, it should be possible to

Section VII

Table 7
Example of a Joblist File (joblist.1)

21
11
12
15
16

69

Section VII 71

Table 8 presents fragments of the true-false test we constructed. If you wish to browse through
the rest of the test, see the tftest.tst file on the DRIVE B disk.

The first line of the file must specify the total number of probes. Each subsequent set of three
lines corresponds to a probe item. The format for these items is as follows:

Line 1 contains a code for each item, taking up the first eight character fields of the line.
Note that blank spaces in these fields count as 0's. The contents of these eight character
fields are defined as follows:

(a) The first three characters fields of the code specify the item’'s number. Because the
first three characters for the first item in Table 8 are " 1", this means that the item's
number is "001."

(b) The fourth character field indicates whether the item is true or false. As can be seen
from Table 8, "1" indicates that the correct response is "true,” and "2" indicates that
the correct response is "false."

(3) The fifth character field specifies the type of item. As can be seen from Table 8, "1"
items test components, "2" items test internal relations (i.e., relations shown in some
diagram), "3" items test relations not shown in any diagram that must be inferred,
and "4" item test relations that involve the environment.

(4) The sixth character field specifies the level of the probe in the diagram hierarchy. As
can be seen from Table 8, "1" items occur at the level immediately below 0000, "2"
items occur one level lower, etc. For the "3" and "4" items just described above for
(3), the sixth character field specifies the hierarchical level of the lowest occurring
component in the relation.

(5) The seventh character field is always blank.

(6) The eighth character field only applies to the "3" and "4" items just described above
for (3). For these items, the eighth character field specifies the hierarchical level of
the highest occurring component in the relation.

Line 2 and Line 3 for each item contain the information presented to subjects. Each of
these two lines can be a maximum of 79 characters and must end with a return. If an item
¢ only requires one line, the second line must nevertheless be left blank.

Important note! You can define fields 4-8 in whatever way you want. You do not need
to define them as we have defined them. However, fields 1-3 must be used to represent
the number of the probe.

The test can contain up to 212 items. As described in Section VIILE, this limit will be removed
in future versions of MECH. I[tems must be ordered by number, as defined by the first three

Section VI1I o 7

characters of each line (see (a) above). When MECH presents the test to a student, it presents
the probes in a random order.

Note that MECH stores the following information for each item in the true-false data file after
running the true false test:

(1) The item number (characters 1-3 of the item code).

(2) The remainder of the eight-character item code.

(3) The subject's response (true or false).

(4) The subject's confidence in their response (1 = low, 2 = moderate, 3 = high).
(5) The subject's reaction time in milliseconds.

MECH does not compute any results based on fields four through eight of the item code.
Instead this information is stored for use by external data analysis programs. MECH stores the
data for probes according to their order in the file from which they were read. MECH does not
currently store the position of the probe in the test sequence. As described in Section VIILA
future versions will also record this information.

75

Section VIII

(5) In the JOB INFORMATION menu that lists the characteristics of previous jobs, we
need to include the faults that were repaired. These could simply be read out of the

fault file that accompanies the job file.

(6) In the JOB INFORMATION menu that lists the characteristics of previous jobs, the
menu option "F10 Return to prev menu” should be changed to "F10 Return to

previous menu".

(7) A number of options need to be added the parameter screen. Later sections
(referenced below in parentheses) describe these options in greater detail. Adding
all these options may require a second "page" in the parameter screen, where each
page can accessed by a "switch page” option in the other.

(a) Add options for files whose names are currently constants in the MECH
program. In particular, add options for:

(a) The name of the diagram file used by MOVE (curently diagram.dat).
(b) The name of the description file used by TUTOR (currently tutor.dat).
(c) The name of the description file used by TEST and REPAIR (currently

testrep.dat).
(d) The name of the logo screen (currently nameplat.dat).

(b) Add an option for the file containing menus and messages (see Section VIILB).

(c) Add three options for:
(a) Type of diagram (ASCII or bit-mapped).
(b) Screen driver (standard monochrome, Hercules monochrome, CGA,

EGA, or VGA).
(c) Menu control (keyboard, mouse, ot both).

See Section VIILD for discussion of these additions.
(d) Add an option for the filename of the COMMENT file (see Section VIILF).
(e) Add an option that asks whether a video disk is being used (see Section VIILK).

v (f) Add an option that asks whether a qualitative simulation is being used (see
Section VIILL).

(8) Options for filenames need to be blocked by cluster in the parameter screen, as
defined in Section VI.C. Each block should be preceded directly by the option for

the drive that contains the cluster below.

Section VIII 77

(17) In Section VLJ we discussed a problem in using SHOWKEYS, namely, that MECH
requires the original parameter file to be unchanged. To remove this problem, and
to remove having to access the parameter file altogether, MECH should extract
whatever it needs from the parameter file and store it with the data files when they
are originally created.

B. Implementing Complete Domain-Independence

We originally thought we had implemented complete domain independence in MECH, only to
discover that a few domain-dependent features remain in the menus and messages of the core
program and in the description fields of job files. For example, domain-dependent menu
options include "Start the engine" and "Stop the engine". Domain-dependent messages include
"The engine will not start". Domain-dependent job fields include "MODEL" and
"MAINTENANCE". If someone wanted to configure MECH for an electronic circuit, these
options, messages, and fields would not be suitable.

What we plan to do is make the contents of menus, messages, and job fields be file-dependent.
Rather than being part of the source code, the contents of menus, messages, and job fields
would exist in MECH's input files. Although users could not change the structure of the menus,
the location of the messages, or the processing of job fields, they could change the names of
menus, the names of menu options, the contents of messages, and the names of job fields.

For example, users could edit the "surface aspects” of menus and messages in a menu/message
input file, much like those constructed for MOVE and TUTOR. The name of this file would be
an option in the parameter screen. Upon initializing, MECH would incorporate the contents of
this file into its configuration for the current session.

For job fields, MECH could simply read the job fields in the file for each job, where each field
is indicated by a preceding @ (see Section VIILA, item 8).

Important note! If a user wants to configure MECH for a domain, but does not want to
reprogram MECH to handle menus, messages, and job fields flexibly, then menus, messages,
and job fields could be changed easily by editing the source files for MECH. Such changes
would only require retyping those character strings that constitute menu names, menu options,
messages, and job fields. Once these changes had been made, MECH would have to be
recompiled.

G

C. Implement Extensions to Other Processors

MECH currently runs on a limited set of computers (see Section VL.B.1). Whatever aspects ot
MECH limit it to these machines must be generalized such that MECH can run on any
computer using the DOS operating system (e.g., IBM, Compagq, Zenith, AST) or processor (e.y..
8088, 8086, 80282, 80386). We also hope to develop a version that runs in the APPLE
environment.

Section VIII 79

(5) A maximum of 36 working conditions and 36 broken conditions for productions in
fault files.

(6) A maximum of two lines for the message of a production in fauit files.

(7) A maximum of 1000 jobs in a joblist file.

(8) A maximum of 212 probes on the true-false test.

All other relevant aspects of MECH are unconstrained in size, as far as we know.
F. Add the COMMENT UTILITY

We need a general utility that can present a file of information at any point during a MECH
session. For example, this utility could be included in keystroke control to present instructions,
strategies, etc. at various points during learning. Or this utility could be triggered to provide
hints when students under user control experience difficulty while troubleshooting.

More specifically, the COMMENT utility should be a procedure that creates and implements
productions of the following form:

Condition: An eliciting keystroke sequence or event.
Action: Presentation of a file.

There appear to be two primary ways such productions could be constructed, one for keystroke
control and another for user control. For keystroke control, the eliciting condition could be 2
fixed keystroke sequence, such as "<ALT> 100". Whenever an instructor enters "<ALT> 100"
under user control, MECH would:

(1) Ask for the name of the file that should be presented at this point later during
keystroke control.

(2) Record the filename.

(3) Ask whether the full screen should be used to present the file, or whether the file
should be presented in the lower menu area below the diagram.

(4) Store a call to COMMENT in the keystroke file that specifies the information in (2)
and (312'a§ arguments.

Subsequently, when the keystroke file is used for keystroke control, encountering this call to
COMMENT will automatically present the student with the file. Note that the student should
not see steps (1) - (4) above. Instead MECH should simply present the file at the appropriate
timé and at the appropriate place on the screen. As in all our other text presentations, MECH
should allow the user to scroll through the file if it is larger than the window in which it is
presented.

COMMENT could be utilized under user control for troubleshooting as follows. Another
option could be added to the parameter screen for a “comment file". In this file would be

Section VIII 81

point, MECH would show the map in the diagram part of the screen and state where the user is
in the lower part of the screen.

This conception of the MAP utility is actually quite simplistic. It really doesn't add much
information to our current use of paths on the upper-left corners of menus (as described in
Section IILB). It should be possible, however, to conceive of more powerful versions of this
utility. If users find that our current use of paths is sufficient, the MAP utility may not be
necessary. '

H. Add the SEARCH Utility

Imagine that someone wants to use MECH for online support during actual troubleshooting.
One way to provide such support would be for the user to access a SEARCH option from the
MAIN menu. The SEARCH menu would allow three options.

(1) The user enters symptoms from a real job into a register.

(2) The user receives a known list of symptoms in alphabetical order and enters those
into the register that describe symptoms in the current problem. The list would be
the union of symptoms from all job files in the current configuration of MECH
(such a list could be quite long).

This menu option would be useful when the symptoms entered in (1) above don't
retrieve any cases in (3) below. This could occur if a user does not describe
symptoms in the same terms that describe symptoms in the job files.

(3) The user could use whatever symptoms were placed in the register by (1) and/or (2)
to search all the pairs of job and fault files in the current configuration of MECH.
The symptoms in the register could be combined by a Boolean "and" or "or" to form

different types of probes for search. Any job matching the current probe would be
retrieved. '

As jobs matching the symptoms are retrieved, the user could browse through them, looking at
their faults and/or other characteristics. This information could provide hypotheses about what
the fault(s) might be in the current problem.

Besides adding the SEARCH routine to MECH, it would be necessary for authors to construct
large sets of job and fault files that represent the variety of problems that occur in a domain.
The problems could represent real or fictional jobs. To the extent it is possible to identify a
fairly exhaustive set of problems, and to the extent they are all represented in job/fault files,

MECH could serve as a means to access this data base in ways that might be useful during real
troubleshooting.

The SEARCH utility might also be useful in training students to troubleshoot. Rather than
solving problems when given symptoms, students could look up known cases when given

Section VIII 83

show an arrow pointing to that component. For example, if a user wanted to see
where the venturi is in the carburetor, the video disk could now show the carburetor
with an arrow pointing at the venturi.

Integrating conceptual and visual information in this manner may be a particularly
powerful way of training students about a system, because they learn about it at
multiple levels. Students would simultaneously learn about the hierarchical
organization of components, the functional organization of components, and how to
identify real instances of components.

(2) Video footage could be associated with every address in the testrep.dat file. New
options in the TEST and REPAIR menus could then allow users to see how a given
test or repair is actually performed. For example, a user could actually watch
someone testing the ratio of air to fuel in the air-fuel mixture. Or a user could
actually watch someone replacing the spark plug. In this way, students could acquire
some degree of procedural knowledge.

Again, integrating conceptual and perceptual training may be ideal. From our
current MECH utilities, students learn domain-independent strategies, symptom-
fault rules, and functional/qualitative reasoning. From the video disk, students
could learn how to perform these skills.

(3) When students access information about jobs, the video disk could show pictures of
the actual device that needs to be repaired and the problematic symptoms it
exhibits. Associating this visual information with the more abstract information
currently provided by MECH would greatly enhance the categorization skills that
underlie fault diagnosis.

If video disk technology were added to MECH, an option for using or not using it would have to
be added to the parameter screen.

L. Add an Interface for Qualitative Simulations

Currently, an author has to wrjte productions for every problem. As described in Section
VIL.D.2, the basis for these productions could lie in intuition, be obtained from experts, or be
obtained indirectly from a simulation. However, MECH could be interfaced directly to a
simulation, thereby allowing the following functions:

.
(1) An instructor could "break” part of the simulation, thereby creating jobs (i.e., fauit
files would contain information about which part of the simulation to break).

(2) When initially presented with a job, a user could try to start the simulation and
acquire symptom information about what is not working properly.

Section Vill 35

References

Collins, A., Salter, W., & Tennev. Y. (1987). Contract progress report. Bolt, Beranek, and
Newman. Cambridge, MA.

Hegerty, M., Just, M.A., & Morrison, L.R. (1988). Mental models of mechanical systems:

Individual differences in qualitative and quantitative reasoning. Cognitive Psychology, 20,
191-236.

Johnson-Laird, P.N. (1983). Mental models. Cambridge, MA: Harvard University Press.

Murphy, G.L., & Medin, D.L. (1985). The role of theories in conceptual coherence.
Psychological Review, 92, 289-316.

Norman, D.A., & Shallice, T, (1986). Attention to action: Willed and automatic control of
behavior. In R.J. Davidson, G.E. Schwartz, & D. Shapiro (Eds.), Consciousness and self-
regulation: Advances in research and theory (Vol. 4). New York: Plenum Press.

Schank, R.C., Collins, G.C., & Hunter, L.E. (1986). Transcending inductive category formation
in learning. The Behavioral and Brain Sciences, 9, 639-651.

White, B.Y., & Frederiksen, J.R. (1986). Intelligent tutoring systems based upon qualitative
model evolutions. In the proceedings of A4AI-86: The national conference on artificial
intelligence. Philadelphia.

Appendix C
The First Round of Follow-up Experimentation
Excerpts from Interim Report
ARI Contract No. MDA903-90-K-0112

The psychology group has performed many experiments in the first year of this project,
investigating the different types of knowledge used in troubleshooting and the effects of
each on learning and assessing the role of third-party explanations and self-explanations in
troubleshooting and learning how to troubleshoot.

0.1 The role of device topography and causal knowledge in trou-
bleshooting

The earliest experimentation was on the role of device topography and causal knowledge in
troubleshooting. Of interest were the roles that these two factors play in people’s ability to
acquire symptom-fault categories. Subjects first learned information about a system that
they were going to troubleshoot (i.e., a satellite refueler or a glass brick maker, both fictional).
All 96 subjects in the experiment learned the components of a given system. Half of these
subjects also learned the system’s hierarchical topography (which was isomorphic for the
satellite refueler and glass brick maker). Subjects learned the system’s components plus
topography until they had memorized them. Subjects then performed troubleshooting. On
each trial, subjects received the name of a component in the system that was malfunctioning,
and their task was to select from a list of other components the component that was the cause
of the malfunction. In a sense, this is a categorization task, because subjects must categorize
each symptom into a fault category. We manipulated the relation between the symptom and
the fault. For subjects who learned the topography, the symptom either occurred before or
after the fault in the topography (direction), crossed with the symptom being either close
or far to the fault (distance). The symptom and fault always occurred within the same
subsystem in the hierarchical topography. All experiments are constructed with subjects via
computer and take around 2 hours per subject. Subjects participate either for course credit
or pay. To induce subjects to perform well. we pay all subjects according to how efficiently
they perform troubleshooting. For subjects who are being paid to be in the experiment, this
bonus is added on top of their basic wage.

Three robust effects demonstrated the effects of topography on troubleshooting. First,
subjects preferred to select faults from the same subsystem as the symptom. Second, sub-
jects preferred to select faults that occurred before the symptom in the topography. Third,
subjects preferred to select faults that were close to the symptom within the same subsys-
tem. All three effects clearly indicate that subjects use topography to construct hypotheses
about the cause of a symptom. Subjects who did not learn topography showed no such
biases. A fourth effect, unexpected but quite interesting, was that subjects were better at
troubleshooting the satellite refueler than at troubleshooting the glass brick maker. This is

surprising, because both systems have the same topography. The effect suggests that causal
knowledge about the relations between particular subsystems and components also affects
subjects’ troubleshooting hypotheses. Because the causal processes are different for these
two systems, differences in troubleshooting result.

In another experiment. we explored the role of causal processing futher. In this exper-
iment, the topography of the system was maintained, but the components were scrambled
within it, thereby precluding any causal understanding of the system. If causal processing
is a factor, then troubleshooting should be worse than in the unscrambled condition. We
have added an additional condition that also maintains the topography but only has letters
indicating the components. thereby again precluding causal understanding. These condi-
tions were compared to a standard, unscrambled topography group, along with a group who
learned no topography.

All subjects learned the same system components (26 of them) and the same abstract
topography prior to learning diagnosis (a two level hierarchy, with one level of 6 components
arranged in a branching graph, with 4 of these components decomposing into 4 chains of
5 components each). But whereas half of the subjects received the components in their
normal positions in the original topography (coherent topography), the other half received
the same components placed randomly within the topography (scrambled topography). In
other words, both groups received the same components and the same abstract pattern of
connectivity between components, but one group received the components inserted in their
normal meaningful positions, whereas the other group received the components inserted
randomly into positions. If subjects simply use patterns of connectivity (i.e., topography) to
learn symptom-fault pairs, then this manipulation should not affect learning in the diagnosis
phase of the experiment. But if subjects further interrelate symptoms and faults according to
causal knowledge, scrambled subjects should experience difficulty and perform poorer than
standard topography subjects. Not only was this prediction upheld, scrambled subjects
performed more poorly than no topography subjects (i.e., subjects who only learned the
components in random orders and learned no topography; see our prior progress report).
Consequently, subjects use both topography and causal knowledge to learn symptom fault
pairs.

A third experiment addresses the role of topography in learning fault categories whose
symptoms vary across problems. In the prior two experiments, only one symptom ever occurs
for a given fault category. These are categories in the limit, because only one exemplar occurs
per category. In this third experiment, we create variability among category exemplars.
Again, we manipulate whether subjects know a topography, and we look for subsystem
and distance effects (not direction effects this time). Each fault category is defined by
the presence of one critical symptom. But in some conditions, irrelevant, non-predictive
symptoms accompany the critical, predictive symptom. Whereas the critical symptom stays
constant across trials, the irrelevant symptoms vary from trial to trial. Across conditions, we
manipulate whether there are 0, 1, or 2 irrelevant symptoms associated with the members
of a fault category.

We expect to see performance drop as the number of irrelevant symptoms increases,
because it becomes increasingly hard for subjects to isolate the critical symptom. However,
we expect much less of a drop for subjects who know topography than for subjects who do
not. The reason is that the critical symptom is always close to the fault and ahead of it in the
same subsystem, whereas the irrelevant symptoms are always far away in other subsystems.
If subjects know the topography, they can use it to isolate the critical symptom, such that
irrelevant features have less of an effect.

Given we found substantial effects of topography in our previous two experiments, we were
quite surprised to find none in this experiment. In trying to explain this unexpected result,
we developed several hypotheses concerning conditions that produce topography effects.
We have designed a series of three experiments to test these hypotheses. However, these
experiments are on the back burner while we address more pressing issues raised by the first
two experiments.

0.2 Why does topography help?

In presenting results from the first two experiments to our colleagues, we discovered that we
had glossed over a critical issue. Topography subjects could perform better for either of two
reasons or both:

1. Topography enables sophisticated guessing about where faults are likely to lie. As
described in the previous progress report, faults in our experiments are likely to lie in
the same subsystem as a symptom, to lie after the symptom in a temporal sequence,
and to lie close to the symptom within the subsystem. If subjects know the topography,
they can restrict search considerably, thereby finding faults faster.

o

Topography enables subjects to develop stronger associative relations between symp-
toms and faults. If subjects have knowledge about connectivity and causal processes,
they can use it to understand why a fault produces a symptom, and they can develop
a more robust memory structure that promotes faster and more permanent learning.

Both of these factors are central to diagnosis, potentially having significant implications
for learning and performance. However, our previous analyses of Experiments 1 and 2 did
not distinguish which of these two factors produced the topography effects we observed.
Consequently, we developed a simple math model of learning, which models percent correct
during diagnosis as a function of a parameter for learning rate and several parameters for
various sources of guessing. Because we know the percent correct from our data, we can
estimate values for learning rate, once we establish all of the guessing parameters. Of in-
terest is whether the guessing parameters and learning rates differ across conditions. By
assessing these differences, we can determine which of the above two factors are controlling

performance. Nearly all of the data necessary for assessing this model existed already in
Experiments 1 and 2. However, we also needed to collect scaling data for one additional
guessing parameter that is essential to the model.

Upon applying the model to our data, we found that topography only affected guessing.
Much to our surprise, topography did not affect learning. Although our central prediction
had been that topography would facilitate learning, and although our preliminary results
had indicated this to be true, these more analytic results show convincingly that topography
is only affecting guessing. Still more surprisingly, we found that the distribution of symptom
and faults, not only facilitated guessing, but also facilicated learning (we had originally
predicted that a predictable distribution would only affect guessing). When the distribution
of symptoms and faults across problems enabled subjects to restrict their search for faults,
they learned symptom-fault rules faster, as estimated by our model.

To corroborate these surprising findings, we ran two further experiments that test for
possible differences in learning rates more directly. Both used a new dependent measure,
trials to criterion, which is a more direct index of learning rate. Essentially, these experiments
are designed to rule out any effect of guessing. For subjects to succeed in diagnosis, they
must learn the associations between symptoms and faults. If different conditions produce
different learning rates, then we should see large differences in performance that correspond
directly to this measure.

Rather than estimating learning indirectly through our model, we wanted to assess it
more directly from an observable measure. In the first experiment, we manipulated the
presence versus absence of topography, as well as the number of symptom-fault rules being
learned (4 or 8). In the second experiment, we manipulated the presence or absence of
topography distribution, together with the distribution of symptom-fault relations (i.e., the
extent to which subjects could use their background knowledge to restrict search).

The paradigm we used to assess learning rates directly is similar to our previous one in
that subjects learn different knowledge about the system prior to diagnosis (e.g., coherent
topography, scrambled topography, no topography). Subsequently, subjects learn symptom-
fault pairs during diagnosis. The key difference between these two experiments and the
previous three experiments concerns the nature of the test during diagnosis: In our previous
studies, subjects received a symptom followed by a set of possible faults in a forced choice
recognition test. Subjects continued to select a possible fault from the forced choice list until
identified the correct fault. In these new experiments, subjects generate what they believe is
the correct fault-they do not select the fault from a forced choice list. After generating what
they believe is the correct fault, subjects receive feedback about whether their response was
correct and then go on to the next problem. To measure learning rate, we set the following
criterion: Subjects meet the learning criterion for a particular problem once they generate
its fault correctly three times in a row. The critical measures include the average trial at
which criterion is reached, the average ratio of correct to correct-plus-incorrect trials, the
average first correct trial, the average number of correct trials prior to reaching criterion,

and so forth. Each of these measures tells us something about the rate at which subjects are
learning associations between symptoms and faults. Guessing is not a factor, because it is
extremely unlikely that subjects could guess the correct response three times in a row. To
meet the criterion, subjects must have learned the symptom-fault association.

In piloting this study, we found the largest differences between conditions that we have
observed so far. Specifically, coherent topography produces faster learning than no topog-
raphy, which produces faster learning than scrambled topography. We are also looking at
learning rates in terms of direction and distance (e.g., are learning rates faster for backward
than for forward faults; are learning rates faster for close faults than for far faults). In many
ways we are quite pleased with this new paradigm; it replicates our previous results using a
fairly different learning task; it seems to produce stronger and cleaner results; and it provides
direct measures of learning rate uncontaminated by guessing.

In the first of these two experiments (our fourth experiment overall), we also manipulated
the number of symptom-fault pairs, with half of the subjects learning 4 symptom-fault pairs
(as in our previous experiments) and the other half learning 8 pairs. As in our previous
experiments, subjects receive all of their 4 or 8 problems in a random order in each of many
blocks (12 in the current experiment). We expected to see this manipulation magnify our
topography effects: The more problems that subjects have to manage and learn, the more
topography helps.

In the second of these two experiments (our fifth experiment overall), we manipulated the
distribution of problems over subsystems. In the previous four experiments, the symptom
for every problem came from the same subsystem in the topography as the fault. This
biased distribution of problems is what enables topography subjects to have an advantage
at guessing faults (in Experiments 1 and 2). In this fifth experiment, we wanted to see if
distribution underlies the advantage in learning rate that the topography condition exhibits
over the other conditions. To assess this issue, we had one third of the subjects again receive
problems whose symptom and fault always lie in the same subsystem. In contrast, for another
third of the subjects, the symptom and fault always lie in different subsystems. Finally, for
the remaining third of the subjects, the symptom and fault lie in the same subsystem half of
the time and in different subsystems the other half of the time. If distribution matters, then 1t
should moderate the topography effects. For example, topography effects might disappear for
problems that cross subsystems, because subjects now have trouble establishing mediating
relations based on connectivity and causal processes. Alternatively, there may still be a
topography advantage, if topography subjects use the topography as a reference system for
coding the symptom and fault in a pair, regardless of whether they come from the same
subsystem or not.

As in the first two experiments, we found no effect of topography on learning rate. Also,
as in the first two experiments, we found an effect of a predictable distribution on learning
rate.

In trying to explain the surprising effect of distribution on learning (as well as on guess-
ing), we arrived at the following model: As the number of potential faults increases, the
strength of the strongest incorrect response increases (following a basic statistical property
of distributions). Consequently, the correct response requires higher strength to exceed its
nearest competitor, as the set of possible faults increases. If subjects can reduce the scope of
search, the number of competitors decreases, thereby requiring less strength for the correct
response to exhibit learning.

This role of search size on learning strikes us as a novel discovery. The importance of
search in memory and problem solving and memory is well known. But typically it’s effects
are assumed to occur prior to learning, when an intelligent system has no idea of what the
correct response might be. Under these conditions, a system is searching for a novel response
it has never made before, and the problem is the number of incorrect responses that must
be checked initially. In contrast, our model assumes that the correct response has already
been learned through previous events and that it is examined on every trial. The problem
is not that the subject must search through many irrelevant responses before finding the
correct one. Instead, the problem is the strength of the correct response is weak initially
and susceptable to interference from other faults. As the number of other faults considered
decreases, there is less chance that an incorrect response will win the competition.

Consequently, our account views search in a fairly novel way, much like the relation of
signal to noise in signal detection theory: As the noise increases, it gets harder to detect the
signal. Learning doesn’t simply amount to the strengthening of responses. Instead, learning
also involves discovering constraints on search that make it easier for the accumlated strength
of the correct response to exceed the noise and control processing.

However, our colleagues have pointed out alternative explanations that also account for
out data. First, subjects may be more likely to construct explanations between symptoms
and responses when they occur predictably near each other. It could be that the presence
of explanations for predictable faults versus the absence of explanations for unpredictable
faults accounts for our distribution effect. Second, subjects may be following Luce’s choice
rule in selecting a fault, where the probability of a particular fault is the ratio of its strength
to the sum of the strengths for all faults in the search set. As the number of faults in the
search set increases, they decrease the relative probability of the correct fault.

We have begun designing experiments to discriminate among these possibilities. For
example, we can assess the explanation hypothesis by making faults predictable but never
having them occur in the same subsystem as the fault. Because this view assumes that
explanations are easiest to construct within the same subsystem, it predicts that performance
should be worse when symptoms and faults occur in different subsystems as compared to
when they occur in the same subsystem (holding predictability and therefore size of the
search set constant). On the other hand, our competition view predicts that these two
conditions do not differ, because the size of the search set does not change.

We can also assess the explanation hypothesis by seeing if the strength of symptom-fault
relations is weaker when search sets are small than when they are large. Because of less
competition for small search sets, relations don’t need to be as strong to exhibit criterial
learning, according to our model. In contrast, the explanation hypothesis still predicts that
relations should be stronger for small search sets, because it’s easier to construct explanations
under these conditions.

To assess the Luce choice hypothesis, we can hold the strength of the nearest competitor
constant at intermediate strength while varying the number of weaker responses. Because
our max hypotheses states that only the strength of the nearest competitor matters, it should
not matter how many weaker alternative exist in the search set. In contrast, the Luce choice
hypotheses assumes that the probability taken away from the correct response increases with
the number of incorrect responses, no matter how weak they are.

Currently, these experiments to distinguish explanations of our distribution effect are
being designed and are on hold, but we do expect to continue work on them in the next
year. These investigations are tied in closely with the AI work supported by this funding.
Although we have failed to find effects of topography thus far on learning (we have only
found them on guessing), we still believe that topography affects learning. The problem is
that our previous experiments probably do not induce subjects to use explanations as much
as they might.

This brings us to our third line of experimentation, discussed in the next section: assessing
the role of explanation in troubleshooting and learning to troubleshoot. However, we believe
that Experiments 1, 2, 4 and 5 constitute a package that provides compelling and informative
results about the role of topography in diagnosis. Making these results clear and presenting
them to the community is a major goal in year two of this project.

0.3 Incorporation of third-party explanations into understand-
ing a system

The third line of research in psychology begins to ask questions that bear directly on the
Al work funded by this project. Specifically, we are interested in how people incorporate
explanations provided by an external source into their understanding of a system, how they
use this incorporated information in diagnosis, and how various factors remind people of this
information later.

There are a long series of experiments that must be performed to explore this area, and
we have only begun the series. Under what conditions is explanation most effective — when
subjects infer their own explanations, or when they are provided with explanations at test
time (i.e., after they have attempted to solve the problem)? Are third-party explanations
better when given while the student is solving a problem or after they have come up with their
own best solution? What types of explanations are there, and which kinds of explanations

work best for teaching which kinds of knowledge? Three particular kinds of explanations we
investigate are functional explanations, topographical explanations, and causal explanations.
From this set of studies, we should learn a lot about the effects of explanation on learning
symptom-fault associations, as well as about how particular types of explanations affect
learning at particular times.

In two initial studies, we simply looked at whether explanations produce faster learning
during diagnosis. As in the previous studies, subjects learn various types of information
about a system prior to learning diagnosis (i.e., coherent topography, scrambled topography,
no topography). In the first of these studies, half of the subjects learn diagnosis exactly as
described for Experiments 4 and 5. The other half produce an explanation linking each symp-
tom and fault every time they solve a problem. Of interest is how generating explanations
affects the acquisition of symptom-fault associations. We expected to see a general benefit
due to producing explanations (based on a variety of well-known phenomena in the mem-
ory literature). Of more interest, however, was whether generating explanations completely
overrode all of the previous effects. Do explanations compensate for scrambled topography
or no topography? Do they eliminate direction and distance effects? We control for learning
time by presenting symptoms and faults for the same amount of time in both conditions
(i.e., in the explanation condition, producing explanations will add time to the task).

Three issues were of interest: First, do explanations provided to people while they are
learning a system’s structure facilitate the later learning of symptom-fault associations? Sec-
ond, do explanations provided to people while they are learning symptom- fault associations
(after they have learned the system’s structure) facilitate learning? Third, are functional
explanations maximally effective in facilitating learning, or does added causal information
improve learning further?

We ran approximately 60 subjects in the two experiments that address the first two
of the above issues, and much to our surprise, we observed little if any beneficial effect
of explanations of any kind at any point in learning (in comparison to control groups who
received no explanations). Consequently, we stopped performing these experiments and tried
to understand why the explanations weren’t working.

To understand the hypothesis we developed, consider a few details of how these experi-
ments work. During the initial learning of a system, subjects study diagrams of the system’s
structure, with each diagram representing a set of physical components connected by their
input-output relations. For example, one of the diagrams for the satellite refueler might rep-
resent several chemical tanks, which are connected to a mixer that blends the chemicals to
form fuel. In this diagram, subjects would learn that chemicals flow from the chemical tanks
to the mixer, where they are mixed. Later, during symptom-fault learning. subjects might
learn that when the mixer malfunctions, it is typically because a chemical tank is broken.
Consequently, the symptom is a malfunctioning mixer, and the fault is a broken chemical
tank. In the experiments, subjects receive ”mixer malfunctioning” as the symptom, and
» chemical tanks broken” as the fault. The way to think about this kind of troubleshooting is

a real world situation where the troubleshooter is dealing with a modular system, for which
various monitoring and diagnosis systems isolate malfunctioning and broken components.
For example, a monitoring system might initially warn the operator that the mixer is mal-
functioning. The operator might then run various diagnosis procedures, which specify that
a chemical tank is broken, causing the mixer to malfunction. At that point, a repair person
might swap out the malfunctioning tank with a replacement.

Note that in the above malfunction and diagnosis. no information was provided about
the behavior of the malfunction (i.e., how the mixer was malfunctioning), or about what
was wrong with the chemical tanks. Instead, the operator simply receives information that
the mixer is malfunctioning, and that a chemical tank is broken. Our hypothesis about why
explanations weren’t helping subjects learn symptom-fault rules was as follows: Perhaps
subjects couldn’t access the explanations from the symptoms, because the symptoms were
too "barren,” not containing any behavioral information that would be specific enough to re-
trieve the explanations. For example, imagine that the symptom is "malfunctioning mixer,”
and that the explanation for why the a broken chemical tank caused this malfunction is that
"the mixer is malfunctioning because, a chemical tank is failing to send a necessary chem-
ical, thereby causing the mixer to produce incorrect fuel mixture.” Because the symptom
(”malfunctioning mixer”) fails to specify its behavioral problem (”producing incorrect fuel
mixture”), the learner has difficulty accessing the explanation that contains this information.
In contrast, when the symptom is elaborated as in, ”mixer that’s producing an incorrect fuel
mixture,” the match is higher, and the explanation is more likely to be retrieved, thereby
providing access to the probable fault. To summarize, perhaps we weren’t seeing explanation
effects, either at learning or test, because, the symptoms weren’t specific enough to retrieve
the explanations.

To test this, we ran a few pilot subjects for whom we provided behavioral information
about the malfunctioning component in the symptom, and we finally found explanation
effects. As a result, we redesigned the four original experiments to incorporate this critical
variable, namely, whether or not the symptom is elaborated behaviorally or not. In these
experiments, this factor is crossed fully with two additional factors: (1) whether subjects
receive explanations at learning, and (2) whether subjects receive explanations at test. Note
that explanations at learning describe how the system works as subjects study and memorize
the diagrams for the system.

The implications of this finding appear important for designing troubleshooting applica-
tions in the real world. Essentially, it suggests that whatever symptom information subjects
receive should be specific and should map closely onto the explanation that links it to the
associated fault. For example, many modular systems nowadays simply instruct the oper-
ator that a particular component is malfunctioning, without specifying the malfunctioning
behavior. If the operator knows an explanation linking the symptom to the fault, it is likely
that this barren error message will not activate the explanation and thereby fail to take
advantage of the explanation’s ability to generate the fault. In contrast, if the error mes-
sage states the behavioral properties of the symptom in a way that maps closely onto the

9

explanation, the explanation is likely to become active and bring the fault to the operator’s
attention.

We have also begun a thorough analysis of the explanations subjects form as they are
solving problems. We are doing this through a protocol study. Subjects go through the
basic learning and test phases of our standard experiment. But rather than simply collecting
measurements on how well they have learned the system or on how well they have learned
symptom fault rules, we collect online protocols of what subjects are thinking throughout
the experiment. During learning, subjects explain how they think the system works. During
testing, subjects explain why they believe certain faults produce certain symptoms.

We collected online explanations that our subjects produced as they learned, first, the
structure of the system. and second, the symptom-fault rules. In contrast, to the previous
experiments, we did not provide subjects with explanations but instead observed the ones
they generated. Of interest is the types of explanations that subjects generate and how these
explanations evolve over the course of learning.

We have finished piloting this study, and the results are quite promising. Subjects con-
struct different kinds of explanations under different conditions that illuminate our previous
work and provide many hypotheses for future work. We expect to report more in this area
next year.

We are also planning further studies that assess the role of remindings in using explana-
tions. Of particular interest are the conditions that produce the best remindings of previous
explanations. If subjects can retrieve prior explanation when they are useful to solving a
current problem, we will see benefits in problem solving. This series of experiments, too,
builds on findings of the AT modeling work.

10

Appendix D
Learning by Understanding Explanations
Selected Papers

Redmond, M. and Martin, J. (1988). Learning by Understanding Explanations. In
Proceedings of the 26th Annual Southeast Regional ACM Conference, pp. 524 ~ 529.

Martin, J. and Redmond, M. (1988). The Use of Explanations for Completing and
Correcting Causal Models. In Proceedings of the 10th Annual Conference of the Cognitive
Science Society.

Martin, J. and Redmond, M. (1989). Acquiring Knowledge by Explaining Observed
Problem Solving. ACM SIGART Neuwsletter, No. 108, pp. 77 - 83.

I’\ PKOCC,K ij O(: ﬂ/\g eéﬂf\ H‘wwml gO(AhC-_—;\s{' gev)»o/\,,\(

AC P\ CO /\1(;—1’&:\\ &

Learning by Understanding Explanations®

Michael Redmond
Joel Martin

School of Information & Computer Science
Artificial Intelligence Research Group
Georgia Institute of Technology
Atlanta, GA 30332-0280
(404) 894-5550
E-mail: redmond@gatech.edu, joel@gatech.edu

Abetreect

Whea complex systems fail, 2 great deal of domala spe-
cific knowiedge must be used Lo dingness the underiylag
fauit. ¥ » disgnesis system is o mprove its performease
throsgh experience, eficiont methods of knowisdge scquini-
tk . sad knowisdge wee are required. Aa spypresch to ths
prooiem is the Explaastion-Based Learning (EBL) parsdigm
In which 3 cansal model Is operntionslised for oficient uee.
However, the EBL appreach dees net allow for the additien
of sew domain knewiedgs, suly the manipaintion of nisd-
ing bnowiedge. *Learsing by Understandiag Knplanations”
Is & paradigm la which such learning can ocscne. [a this
parndigm, the system has 2 mental medel of the demaia
that might have besa derived frem temtbecks or tatering,
just ae in the caes of a humaa student. The system or st~
deat would attend o an lnstructer ag that instrecier seived
an exampie case aad woeuld try %o sadesstand cach state-
meat o action. When the instrucier explaine semething
that is net yot undemstesd, the syvtem debuge s mental
modal, adding er changing information. Undestnading aa
exphastion, ia gensral, will require lnfirensces sbeut thet

how the explasstion is endesstoed sad will, in part, deter

1 Introduction

Dwd%um&ﬂummmam
Mddwpﬂ:w A frequeat meaas of in-
structiom ia 2 domains is the preseatation of
mh&*&hdﬂ,hﬂm‘ht&mwm
ing the samme cases. This is true in wide ranging arvas such as
Xsutomobile mechanics, medicine, aad mesagement strategy.
In human protocel studies, Laacaster aad Kolodaer [LK87)
examined the evolution from novice to expert in suto-mechanics
Permission 10 copy without fee all or part of this meterial is granted pro-
vided that the copies are not made or dietributed for direct commercial
advantage, the ACM copyrigit notice and the title of the publication
and its dale appeer, and notice is given thet copying is by permission
dmmmbrmm To copy otherwise, or 0

repudlish, requires a fee and/or specific permission.
© 1988 ACM 0-89791-259-4/88/0400-0524 $0.75

524

students. From thess studies has arisen the Mm “Learn-
ing By Undesstandiag Explanstions” (LBUE). In this paradigm,
the students have a meatel model of cars and other useful

- infermation which they have developed from book knowl-
" odge, instruction sad experiencs. The meatal model inciudes

ameag other things, causal reintisaships. The students fol-
low along with the inetructor, making inferences from what he
dees. When ihe instrustor explains something that deviates
from their wadesstendiag, they debug their model, adding or
chaaging informatioa. In addition the students can generate
diagnostie shert cuta, called symptom fauit sets, which asso-
ciate & given fauit with pessible hypotheses. This paradigm
allows the addition of new causal kmowiedge, whereas clamic
Explansticn-Besed (EB) (EBL (DeJ83| (DM86} , and EBG

A general medel of this learning paradigm and two pre-
liminary implemsntations have been developed. The novel
characteristic of the present approach is its ability to use new
Imowiedge that is provided by an instructor in filling & gap in
aa explanation while debugging previous information in the
menial model. The paper will present the general concept
and the twe implementations.

2 General Model

2.1 Imtroduction

The currens ressarch spprosches the problem of learning to
dieguose by examining whet is learned from an instructor’s
hypotheses and subsequent explanaticns. Conceptually, this
process invelves uaderstanding why a symptom occurs, why
& particular hypothesis is proposed, aad why a particular
sxplanation is given.

When a systam is attending to an expert’s diagnosis, it
must mabe inforences from the givea information to fill in the
omitted information. One way to do this is causal chaining.

" Whea it receives a sympiem, it builds backward chains to

all possible fndings that could lead to the symptom. When
it sees & hypethesis, it builds forward chains to all possible
findings that could be caused by the hypothesised fault. If
forward and backward chaims meet, thea the student has an
explanation for the hypothesis. It caa collapee the chain into
its fauit and sympiom, and save it in a symptom fault set or
in the meatal medel. The collapeed chain could then be used
more eficisatly in future, similar situations.

*This reseasch was supparted by the Army Ressarch lastitute for the Behavioral
and Social Scienees under Consraes No. MDA-003-36-C-173. The authors wish to
thank Jamet Kelodner for her sdvies snd guidaate, and Roy Turner and Mark -
Graves foe heipful comments en cariier vemions of the paper.

‘Often, however, the studeat will not have eacugh infos-
mation to explain the hypothesis. Then the instructor's ex-
planation can : y useful. If the explanation is X cewses Y, it
can be added directly to the mesntal model with high credi-
bility. It aleo may allow bridging a gap to complets s cansel

pretoccls. Theso sets of pairings eesocinte & sympiom with
a probleme, and are weed te derive imidinl hypotheses during
diagnosis, and 0 index into the meental medel at the appropri-
ats piace. Aa eoample of whas & generslised symptom-{ault
set looks like is given im Pigure 2.

chain, thus enabling EBG by adding to the causel domain
knowledge. If it does not do s0, the systema still csn infer
that the hypoth 1 fault ca X, and that Y causes the
symptom, though there may be intermediate causal links.
As has beso noted by masy researchers (MKK38|, EB
mathods do not generate any knowledge thas the system does
not alresdy have; existing knowledge iv reorganized to be
more useful. In collapsing the chains, the LBUE maethod
has some similarities to Explanation-Based Generslization

(EBG) [MKK86| and Explanatioa-Based Learning (EBL) [DMs6).

The studert has used available knowledge to form an expla-
nation, which is then stored, somewhas like & macro operator
in STRIPS [FHNT2], for later use. The LBUE concept goes
beyond explanation-based methods by being able to use new
information to creats a chain when it would otherwise not be
possible.

2.2 Algorithm

1. From the symptom, chain backward toward possible
findings

2. From each hypothesis, chain forward toward possible
effects

3. If the symptom chain maesta a hypothesis chain, thea
the generalixation that (casse Aypothesis sympiom) is
added to the symptom fault table aad to the meatal
model

4. If the chains do not meet

(a) Chain backwards from the explanation toward the
hypotheses

(b) Chain forward from the explanatioa toward the
symptom

(r) 1 hath directions can ha linked, thea the muss gen-

eral reiationship (cowsa Aypethocis symptam) can
bae learned

5. Add explanstion to the mental model

2.3 Inputs and QOutputs

A system implementing this paradigm should be given a cur-
rent mental model of the domain, a set of likely symptom-
fault pairings, and the representation of an expert’s diagnce-
tic episode. Following Lancaster and Kolodssr [LK387], the
mental model contains knowledge structured for components
and processes, with each structure representing information
about inputs, outputs, and structural, functicmal, and causal
relationships with other structures. The structures are simi-
lar to frames {Min75], with the above kmowledge filling appro-
priate slots. In one of the implementations, the similarity to
framedis more functional than structural. A general example
of part of the mental model is shown in Figure 1. Other rela-
tionshipa can be expresssd through levels of abstracticn. An
initial version was described in more detail in Allison [Al187).

The symptom-fault pairings were suggestad by Lancaater
and Kolodner {LK87|, who obssrved their existence in human

Sincs nstural language processiag is not the focus of this
ressarch, the diagnastic episodes are input ae a list of clauess,
roprossaling 2y mpbom, hypothesss, teets, explanations, or in-
formation (Figure 3).

ftarteor:

(isa compeneat)

;A starter 15 a cempemeat.

(part-ef ssarting-system)
iA startsr 18 a pars ¢f the startinmg system.

(impet alsetricity batsery bastery-cables)
;A startex receives electricity froa
;358 battery via dattazy cables.

(parts otarter-pisnisa-gaar etartar-motor)
:A startez has parts: pinsiom gear and
. 8%aTtar meter.

(fumction spim-actien starter-pimnion-gear)
;The fuacties of the starter is to
;opds the pizniea gear.

(cause (ewviteh-ection selensid ea)

= (adjacent starter-pimiem-geer
flywhool-rizg-gear))
iSetting the selenoid ewitch causes
ithe piaisa gear amd tho flywheel gear
;%0 beceme sdjscenmt.

(conse (cxaamlh staster—piaica~goar)

(czenk flywbsel-ziag-geer))
iCranicing the pinics gear causes the
flyvkeal gear %o crack.

Figare 1: A Gemorailnad Mantal Meded Definiticn of 2 Starter.

Gemazelined Pyupienm-PFault Sets
Sympeam: ((NST (STAAT)) CAR)

fymptoa!
Faults:

Sympten:
Tanlts:

Faalts: ((MALFSNETION PEBL-SYSTEHN), credibility = 3)

((MALFUMETION STAATING-EYSTEN), crodibility = 1)
((MALFUSCTIDN AIR-INTAKR-SYSTEM), credibility = 1)

(CRANK RNSINR-GYOTEM SLIV)
((MALPUNOTION STARTING-SYSTRM), credibility « 4)
((MALFUNCTION CRARGIHG-SYFTEX), credibility = 2).

(MALFUMCTION FURL-SYSTEN):

((MALISCTION FUEL-LINE), credibility = 4)
((MALYUSCTION FURL-TAMK), credibility = 2)
((MALFUSCTION PURL-PR®), credibility = i)

Yigure 3: Cemaralised Sympican/Fault Seta.
‘Credibility’ represemts the likelibood that
& particular pair beids.

The output is aa updated mental model and a cognitive

trace of the learning procese. The following things may be
learned:

1. new cbjects
2. new relatioaships between objects
3. new causal information

4. new symptom fault knowledge

g *protocel®l3®) | Made up peetocsl
setq *predecoldis® ((IYK ((M {Coeadt)) lm:-))
{(HYP Hi ((Maes (Contsine)) Puei-Tank Gasslice))
(TEST (Coateins Paol-Thals Gasokine) (Type Viezai)
(Reouit ((Hod (Contaime)) Pect-Taak Cesaline)))
NYP N3 (Cevmreded Bassery Torminals))
RXP WY (Frequeaey (Jormwedod Battooy: Torminale) High))
(BXP %2 (Uouse (Qesveded Bertery Toruminolo) ((Hed (Uoameetod))
Battory Blectirica-wise)))
(TRBST (C dod Badtery-Tarmineis| (Type Vieuni)
{Result (Correded Bostery-Tovmuinaic)))
{ACTION (Scrope Battery-Terminale Corvosiea))
(TBST (C ded Dostery-T teaie) (Type Vieual)
(Resuit ({Not (Corvoded)) DatteryTerminala)})
{HYP K3 (Commetted Battery-Cabiss Gremnd Locoa))
(TBST (Commected Battary-Cakiss Gronnd) (Type Viesel)
(Resuit (Conascred BattornCablos Greomd Leess)))
(HYP K¢ (Coanected
{BEXP Hé (Comee (C

Lew))
(TEST (Powor Bastery) (Type YATO) (Resnit (Pewar Battory Low)))
(HYP HE ((Not (Censrnte}) Battsry-Coll Powes))
{BXP Heé (Canse (Spilf BastorpColl Blsetsatysos)
{({Not (Cenersse)) BatterpnColl Power)))
;)YAULT ({ Mot (Cenersee}) BotternCell Power))

Yiguere &: An exasopie prosseel.

After learning, diagnosis is more efficient and mors pow-
arful for the sama or similar problems, becouss the symptom-
(ault set can provide more reasonable hypotheses more quickly
and the meatal model is more capable of verifying an expla-
nation.

3.4 Example

Tho;ncnlm'n(mbdildmucdbythokm

ing exampiles. The frsé of theso examplen shows learning with
s:ymptomudhypo&eu,nthoctnqummupm
The symptom that the instructor reports is slow cranking of
the engine. The systesma chaine backward hypothesizing that
the crankshaft is spinning slowly, that the starter motor is
spinning slowly, that the battery imm’t generating much clec-
tricity:

(crank angine slew) -->

(spir crankskaft slow) --> ;. cause
(spin starter-gear slow) --» ; camse
(spiz starter-seter slew) --> ; cauee

{(contains starter-vire curroat low) -->
(genvrate battery electricity low)

The system achisves this beckward chaining by using infos-
mation about normal fusctien and hew, in gemernl, modifi-
cation of that aormeal fuaction modifiss the rest of the mech-
anism.

Themﬁuﬁnmahmtm;w
wire can causs the obssrved symptam of slow crankiag of
the engine. The syetess chains forwerd, inferring that the
battery cabls may be easrying less then normal curremt, that
the starter receives less pewer, and thot the wire in the starter
igets less electricity:

(cracked battary-cable) -->
(containa battery-cable current law) -->
(inpat starter current lew) -->
(contains starter-vire curreat low)

In this case, tha symptom and hypothesss chains mest, so
an explanation is not needed. The system understands the
instructor’s hypothesis, and s able to learm & new symptom-
fault set ind add the relaticnship

w26

(canse (cracked battery-cadle) (crank engine slow))
to the mental model.

3.8 Example 2

Asalready mentioned, the syetem does not always have encugh
domain knowledge to fully understand an instructor's hy-
pothesis. When aa explanation i given, an important gap in
the system’s kmowledge may be filled, thereby allowing com-
pletion of & caussl chein. Additicaally, the explanation may
assist the system W directing the ssarch for relevant causal
relationships. Por example, there are poteatially many causal

chaire that might be cosstructed when the symptom is that
the car is stalliag. The axplanatica can help determine which
of many chains is relovant.

Suppose that the imstructor pressats a situation in which
the car has etallsd. The system chaims backward, hypothe-
sising as far ew thas there might not be combustion occurring
in the cylinders:

(a0t (rum emgims)) --> ; stalled engine
(mot (spin cramkshaft)) -->
(not (dowm-stroke cyliader)) -->
(nes (sombeatien sylinder))
. eyliadar 1a a abstract term for amy cylinder.

The instructor thea provides tha hypothesis that the but-
terfly vaive of the choke assembly ia stuck. Forward chaining
would reveal:

(net (aevable butterfly-valve)) -->
(flow air carbareter low)

In this case, the forward and backward chains do not
meet, and the systam does not know or cannot retrieve any
cansal relationships that might connect the chains. However,
if the instructoe provides the explamation that low air flow
into the carburetor leads to & low air/ges mixture as the air
passes the fuel float bowl then the following results:

(not (mevable buttertly-valve)) -->
(flow air carbureter low) -->
(2ix air gas less) >
(not (combmstiom cyliader)) -->
(net (dowm-stroke cylinder)) -->
(zot (spim crankshaft)) -->

(mot (run engime))
This exampls of explasation use demonstrates how a new

causel reiaticnship may be added, (2ow air carburetor low)
= (mix air gas less) , and how am existing causal relationship
that was not accessed or was not kmown to apply, (mix air
gas less) = (not (combustica cylinder)), can be used. The
system, therefore, undsretands the imstructor’s hypothesis,
and is able 0 lsaem a mew symptom-fault set and add the
relatioeships

(canse (flow air carburetor low)
(mix air ges less))

(canse (not (mevable butterfly-valve))
(zet (rua engine)))

to the mental model.

3.8 Dobuggin;'

Since new information iv being added to the mental model
thers is a poesibility that a contradiction may occur. A con-

tradiction could arise in many different vnyn. There might
be two pieces of knowiedge much that .
(corroded battery-terminals) -->
(commect battery battery-terainsls)

and (corroded battery-terminsls) -->
(not (coamact battery battery-terminals))

A circular chein might be puseible frosm known informa-
tinn, surh that

(corrodad battery-terminals)

-=> (not (commect battery battery-terainals))
-=> (not (spin starter-moter))

--> (not (apin startar-gear))

-=> (not (corroded battery-termimals))

There are actually many poesibilities. For example,

(corroded battery-terminals) -->
((not (conmect bettery battery-terminals))
& (spin startar-motor))
(not (comnect battery battery-terminals)) -->
(not (spin starter-gear))
(spin starter-motor) -->
(spin starter-gear)

Contradictions may not be detected immediataly bacauss
the causal information is distributed throughout the model,
and because an arbitrary amount of causal chaining may be
neceasary. In cases where the new input is found to be incosn-
sistent, the source of the information is used to decide what
to believe. Knowledge from the expert is given precedence
over older information. Information that contradicta the ex-
pert is either removed, as in implementation two below, or
ity strength is decreesed, as in implementatioa cas.

3 Implementations

Implementation of the general model described above has fol-
lowed two parallel paths. This decisicn wes mads because the
researrh is explorstory and, thecefors should gemesate sev-
aral alternative approaches to the problem. An additioeal
sdvantage of the seperats implomentaiicas is thed the dif-
{erent programming efforta highlight diferemt inconsietencies
and difficulties with the model, poesibly producing a mare
general theory than would arise from a simgle implemeate-

tion.

3.1 First Implementation

One of the implementatioas is based upom a simpls active
semantic net, similar to local connectionist models such 2e
McClelland and Rumelhart’s [MR81] intaractive activation
model. In & diagnosis treining example, this architecturs re-
ceives input, consisting of symptoms, hypotheses, and expla-
nations of th se hypotheses, as doescribed above in the ges-
eral algorithm section. The symptom will trigger backwerd
chaining through the existing causal knowledge. This searck
s guided by + ights oa the causal links that indicate their
credibility or likelihood. The underlying caussl knowledge
was designed with reference to Kuipers (Kui84] and DeKleer
and Brown [dKB81|, but is not as principled as were their
approaches. To process the aymptom, the system attempts
o discover the cause.

As the inetractor Pprogremses ia the problem, s/he will sug-
gost possible hypotheses. For each, the system will try to ex-
plain why thet hypothesis would ceses the symptom, again
the soarch is guided by weights om the causal links. If a causal
chaia caa be found from the hypothasis to the symptom then
8 “short cut® cawes is sdded, of the form (couse hypothesis
sympéom). Howaver, if the oystem is unable to find & cauoal
chaia, it attempia Lo brkige & gap botwoen twa partial chaina.
This ie the situation depiciod in section 3.4. When no chain
is found, seversl paenible lacomplote pashs may have been
coasidesad. If the ead of an incomplets chaian caa be con-
necied Vo the begizaing of a chein from the symptom, thea
that caasal gap will be flied and the emtire chain collapesd
as in section 3.4. Gaps will be Alled caly if thers is an expla-
nation of oo generel kncwiedge ihas indicates whether &
cause is possible. Aa exaenple of this second possibility is, a
craciied wire can cause low electricity because (a) wires con-
duct elactricity, and (b} a conduit affocts whas it conducts.

Whaa explasations eater the system, they are assumed to
indicate what cousal gap Alling is required. They may simply
ll a gap themssives, or they may refer to causal knowledge
that the system already has es indicsted in section 2.5. The
sxplanation is handled by continuiag to process the previcus
hypothesis, emphasising these chains thot contaia the expla-
m‘rmmmm-mmﬁumpp
from the ead of all hypothesis chains to the provided expla-
oatioa aad from thet explasation to the start of all beckward
chains from the symptos

Thae system currestly learns aad partially dsbugs infos-
matioa seceasary for diagmostic performancs. It acquires new
causal information, collupees chaine of resesaing for more of-
Acieat uss, sad reduces the weights of canses that coatradict
what the instructor states or implies is a true causal relation-
ship. In other words, the syetam learms what it does not know
and apeciically what it loarns dspeads upon the inferences
that can be mads frem the imetractor’s statemeats.

Puture directione will inciude adding more principled causal
repeecentations, allowing meore lsaming about the instruc-
tor’s strategies fromn the explepations snd allowing learning
of the absiract knowiedge necossary to eveluate gap filling in
the sbeeace of ax explanatica.

3.3 Second Implementation

The second implementatios uses aa eabanced version of the
mendal model described ia Allisen [AllS7]. The process closely
follows tho gemsrel comcept preseased ia sectiom 2.2. A dif-
feremce ia that the syctem lsarms somnsthing evea when the
For exampla, after siopa | through 4 have beea followed, the

) § A3 Y 2 8
------- Pgom, eoe) Lom=-

whare the uppercase lettars reproseat pisces of knowledge
thes are invoived in causal chains:

K - Rypetheais

8§ - Sywpton

- Erplazatiea

- Edge of chain forward from hypothesia
- Edge of chaim back from explamatioa

~ Ldge of chain back {rem sysptom

- Edge of chaia foreard froa explanation

“ N @

527

If sithez direction of chaiming is succoesful in cloing a gop,
them a caussl relatienchip can be learmed. In the cxample,
sincs A ond B repressat the same thing, the chains frem &
to A and froma F to B mest, and the partial cause (cowse 5§
E) can be learned.

In the directiom which caanot be closad, the systam infers
that the gap betwoes the chalns caa be fllod, based oa the

expert instructor baving givea the hypothesis end the symp- A

tom. In the example, nothing in the chain £ lo Y maiches
anything in the chain 3 te 3. The inference ia mads thas
smallest gap should be Blled ({cause Y 3)).

The system learns different informatiocn when the mental
model is in a differeat state. Whea the sysiem is re-run
using the same learning episode and the modified woriring
model, additional informerion is learred. The system ia able
to build the chain further beck from the symptom because of
the newiy learned causal knowledge, and similarly, is able to
forward chain further from the hypothesis. This may allow
the chains to meat, so the hypothesis can be associated with
the symptom in the symptom-fault tabls, and the rasatal
model can be updated to include thes the hypothesis cauaca
the symptom. This eaables beiter diagnosic as woll aa more
{uture learring.

The system resolvss comtredictions in the meatal model
by checking for a comtradiction whesaver caueal inlormaticn
is added. The check i¢ caly dose for the frame where the
information is being sdded; no cawsal chaiaing is deas. If
a conflict exists, the piecs of informatiee with the higher
credibility will be retaimed.

One tking shown by this implemwatetion is that the pre-
gram should have an understanding of the dingnostic stretegy

being used by the instructor in order to be better able to us-

derstand the explamation.

3.3 Summary of the Implementaticas

It is surprising that the two implenwetations, which began
a3 vastly different representatioas of the seine »roblem, have
started to converge a8 maay levels. Tha two implemeatations
use differsat repressataiione, one, & flao greined coasectica-
ist systern and the other, more knowledge based. As the im-
plemeata_.ons procseded, however, tho fine grained appeoech
has come to use the convamtions of frame-besed systeme, and
the knowledge-based approsch has come to ues a more bo-
mogenacus representation for all systems knowilsdge. Sim-
ilarly, tirough indepemdent developmens, both approaches
have coms to use weights ca caxsal relationshiss Lo represeat
the credibility of & cames. Of more proctical importaacs for
future ressarch, however, are the diflarences. There are two
general differences i the techaical déails of how the gea-
eral sigorithm wek implemonted. Pirwt, whea 2 cansel gap
is present but no sxplasasioa flls thas gap, implkementasion
one uses generic knewlodgs about what affects what, whereas
implementation twe wes & lees geaeral but far cimpler notion
of filling gaps betwesa recems hypotheses and symptoms. The
ﬂ‘!tmthodbnmmhowhdcebbmonthapmuh-
tion of & new causal relatioaship and chould therefore lead
to mare reliable relationships and a maore flezible matric foe
evaiuating whether a givea cousel gap should be filled. The
second diffsrence involves where causel informatioa is stored
and how it can be accessed. Implementatica ons doss not ad-
dress the issus of limited availability of causal relationshipa.
Instead, if a relationehip is in the syssem, it can bs used. On

528

the cther haad, implementation two allows the more realistic
situation in whick cauzes are not maximally indexed when
they eater tha sysiem. That is, they may not necessarily
be retrieved whon nesded unless the proper cues are present.
This is & more realistic and efcient approach for a system
with 2 very large memory.

A majoe digection of (uture ressarch will involve integrat-
ing the two implementatiocas into a single general mathod.

4 Related Work

As has already been noted, the current effort uses techniques
thes are in some ways eimilar to thoss of Dejong and Mooagey
[DM86] aad Mitcheil ot al. [MKK88). It is similar in that it
recognises that a gystem may know all the necessary infor-
matioa to solve & given problem, but a solution path through
this information may be ineficient to calculate. Instruction
or obeervatios might allow a semple path to be generated
and condenoed to & more easily used form. Specifically, in
diagnosis, a causal chain muss be discovered in a potentially
very large nstwork of causal information. EBL can be prof-
itably used to permit instruction to produce “short cuts” in
thas network.

Claasical EBL, however, doss not produca enough learn-
ing whoa tho cawsal notwork is incomplete. This may bae
remediod by the leerning by failing to explaia (LBFE) [IIAIMM
technique of iselating the informatioa that is present in the
input but is not d, and sub tly adding it to
the existing EBL system. MM;hthncmmtmodelhu
B0t yot beea deseribed in exactly these toems, it is in fact
an exampls of LBFE. It differs from Hill's woek by propoging
thas the informatien that must be added in . ¢ abeence of
an explonation is net necesearily explicit!y represented in the
input. Instead, the currens offort allows for more general as-
sigamoat of blazse by disambigueting what might be implied
by the instructar. Aleo, the curreat effort presents a domain
indepondent notion of LBPE that deacribes how potentially
aay causel net might grow, wheress Hill's effort was, in his
cwn view, doenain specific.

Ona of the methods thas is used to augment incomplste
aetworks in the curreat appsoech is Lo use relationships that
are more gemarsl than cavees in order to infer causation. For
oxampls, an action and a stase change that reiate to the same
object tead to bo caumally related. Thie technique was orig-
inally used by Passesi [Pas8?) aad a similar approach was
suggested by Rusesil [Rusé?).

Other studies that have chared some of the goals of the
current ressarch iz other domsias include, Haas and Hendrix
((HH83|, Learning by being told), sad Sammut and Banerji
([SB#8)|, Concept learning by askiag questions).

s Py

5 Conclusions and Future Directions

This peper has discuesed the Learning by Understanding Ex-
planations paradigm that was observed by Lancaster and
Kolodner (LK87) ia the training of car mechanics. The main
contributioa of the current effort is in the ability to accept
new knowledge and make it part of tha mental model, whila
using it to understand sn explasetion and form a uaw gon-
eralization.

There are several directions for future research. First,
in disgnosis, causal chaining is not the only strategy used,
though it was the most commeon in the protocols. The expla-
nations used by the instructor reflect several different strate-

gies. For example, a dead battery could be hypothesized as
a problem becauss that occurs frequently. It may be that
a particular model of car has & defect. Qr the explanatica
may be an explanation of s normal function of a component
that the instructor thinks the student may not understand.
For this resson, and to allow strategies to be learned and im-
rroved, diagnostic strategies must be explicitly repressnted.
Gome initial work hies been dune on the represestation.
tacowd, Letlar repressatation of the causel knowiedge ls
needed to take full advaatage of the inferencing possible from
qualitative models. The aim is to use moce levels of abstrac-
tion to allow reazoning at whatever level may be appropriate,
and so that knowledge of the normal functica of a mechanism
can be more useful in infsrencing. Third, mare lsarning may
be poasible in this paradigm if Case-Based Reasoning (K84,
a method of using previous episcdes and eveluation of their
resuits to suggest solutions t0 new problems, could be inte-
grated. Laat'y, Larry Barsalou and Chris Hale of the Psy-
chology deparument at the Georgia Institute of Technology
are planning experiments to further investigats how pecple
do diagnosis of mechanical devices. Puture versions of the
current model will attempt to incorporase those findings.

References

K. R. Allison. Use of a working model in fault
diagnomia. [n Preceodinge of the 25tk Anmusd Con-
ference of the Sowtheast Regiom ACM., 1987.

G. DeJomg. Acquiring schemata through undee-
standing and gemsralized plans. In Procecdings
of the Eighth International Jaiat Conferemce on
Artificiel Intelligence., Karisruhe, West Germaay.,
1983,

J. de Kleor and J. S. Brown. Maental models of
physical mechanisms and their acquisition. [a J. R.
Anderson, editor, Cognsiive Skills end Thesr Ac-
guistion., Lawrence Erlbaum, Hilladale, NJ, 1981.

G. DeJong snd R. Mooney. Explaaastioa based
learning: an alternative view. AMackine Learniag,
1:145-1786, 1988,

R. E. Fikes, P. Hart, and N. J. Nilesoa. Learning
and executing generalized robot plana. Artsficial
Intelligence, 3:251-288, 1972.

N. Haas and G. Hendrix. Learning by being told:
acquiring knowledge for information managemsnt.
[n R. Michalaki, J. Carboneil, and T. Mitchall,
editors, Mechiae Learsing: Am Artificiel Intells.
gence Approach, Morgan Kaufmanm, Los Altos,
CA, 1983. v

R. Hill. Leaning by failing to explain. In Pro-
ceedingo of the Netional Conference on Artificial
Intelligence., 1988,

529

J. Kolodner and R. Simpesn Jr. A case for case
bassd reasening. In Precocdings of the Sizth As-
suel Conferemce of the Cogusivee Science Secisty,
1684,

J. Kuipers. Commonsense ressoning about causal-
ity: deriving behavior from structure. Artificial
Intolligomoe, 24:168-203, 1084,

J. Lamcaster end J. Kolodmer. ¥roblem solving
iz & netwrel task as o Asactiom of experiencs. In
Procesdings of ths Ninth Anmeel Conferencs of the
Cognativg Scieass Seciety, Irvine, CA, 1967.

M. Missky. A framewerk for repressatiag knowl-
edge. In P. H. Winstea, editor, The Poychology of
Cempater Vision, McGraw-Hill, New York, 1975.

T. M. Mitchell, R. M. Kellaz, and S. T. Kedar-
Cabelli. Expleastion besed learming: an unifying
view. Mochine Lsernsag, 1:47-80, 1968,

J. L. MeClelland and D. E. Rusnelbart. An inter-
aciive achivetion medel of context efects in letter
porcapiton: pers 1. an acesumt of basic findings.
Popcholegionl Rowiow, 88:3T3—407, 1981,

M. Pageani. Inducing coumsal aad social theo-
ries: a prerequisite for explenation-based learning.
In Procssdings of the Fowrth Anasel /nternational
Workakop on Mackine Learming, Irvine, CA, 1987.

8. J. Ruanall. Azalogy aad singlo-instance genaral-
isatien. In Precssdinge of the Pourth Annual Inter-
natiens! Workshop on Meching Learning, Irvine,
CA, 1907,

C. Sumeneat and R. B. Banerji. Learning concepta
by asking questions. In R. Michalski, J. Carbouall,
and T. Mitchell, editers, Moching Lesrning: An
Artificsal Inteliigense Approcch, Velume IT, Mor-
gea Kaufimane, Los Altos, CA, 1088,

The Use of Explanations for Completing and Correcting Causal Models!
From the Proceedings of the 10th annual Cog. Sci. Conf., 1988

Joel D. Martin and Michael Redmond
Georgia Institute of Technology
E-mail: joel@gatech.edu, redmond@gatech.edu

Abstract

Causal models describe some part of the world to allow an information system to perform
complex tasks such as diagnosis. However, as many researchers have discovered, such models
are rarely complete or consistent. As well, the world may change slightly, making a previously
complete model incomplete. A computational theory of the use of causal models must allow for
completion and correction in the face of new evidence. This paper discusses these issues with
respect to the evolution of a causal model in & diagnosis task. The reasoner’s goal is to diagnose
a fault in a malfunctioning 2utomobile, and it improves its diagnostic model by comparing it
with an instructor’s. A general process model is presonted with two implementations. Related
work in explanation based learning and in incorrect causal models is discussed.

Keywords: Learning, Causal Models, Explanations, Diagnosis

INTRODUCTION

A causal model or domain theory is an essential ingredient in understanding complex sit-
uations. For example, in order to diagnose a fault in a complex system, the diagnostician
must be capable of making guesses about what might be wrong. However, without ap-
propriate heuristic knowledge to guide and make those guesses, the correct hypothesis
may never arise. Although many researchers have acknowledged the need for such causal
models [Kuipers, 1984] [deKleer & Brown, 1981], very few have been concerned with the
possibility that the domain theory may be incomplete or inconsistent. Those researchers
who have recognized this problem [Rajamoney & DeJong, 1987] have not yet allowed for
modification of the underlying causal theory.

With this in mind, Lancaster and Kolodner [1987] took protocols of the diagnostic
behavior of novice, intermediate, advanced, and expert car mechanics. They observed
evidence for a working model, a set of symptom fault pairings, and diagnostic strategies.
They also observed [Lancaster, personal communication| that less experienced mechanics
had inconsistent and incomplete knowledge, as one might expect. The research presented
in this paper represents an effort to discover how an incomplete causal model (novice) can
eyolve to a more complete (experienced) state as a result of problem solving expericnce
coupled with explanations about how those problems are solved.

Our model is implemented in two computer programs called EDSEL-1 and EDSET.-
2 (Explanation in Diagnosis: the uae of Symptoma, hypothenes, and Fxplanations for
Learning) that each begin with a novice memory and nro presented with problemns nnd
explanations of how to solve those problems. Specifically, the systems “watch” or attend
to an instructor who is diagnosing a fault in an automobile. As they do so, they attempt

' This research was supported by the Army Research Institute for the Behavioraland Social Sciences under Contract
No. MDA-903-86-C-173. The authors wish to thank Janet Kolodner for her advice and guidance, and Mark Graves
and Hong Shinn for helpful comments on earlier versions of the paper.

MARTIN & REDMOND

to identify missing information of various types or to identify whether there is an incon-
sistency. If one of these problems is discovered, the systems modify their causal model to
prevent the difficulty in the future. The recognition and modifications are based upon an
attempt by the systems to explain their input.

The paper describes a general algorithm, presents the issues involved in completing and
correcting causal models, and compares the two implementations.

GENERAL PROCESS

Completing and correcting a causal model requires a reasoner to recognize when it is
missing a piece of information and then to incorporate that information into the model.
This notion is complicated by the fact that there are different types of information in the
model and that existing knowledge affects how new information is incorporated.
Redmond and Martin [1988] noted in the protocols from Lancaster and Kolodner [1987]
that an instructor provides the students with a symptom, a series of hypotheses, and
cxplanations for those hypotheses. We demonstrated that a system may process thesc
inputs by attompting to build causnl chains botweon hypotheses and the symptom, using
provided explanations if no causal chain is obvious. If a complete chain can be built, it can

be collapsed and be used more efficiently in future similar situations. If a complete chain
cannot be built, then the instructor’s explanation can be helpful, either by being added
directly to the causal model, or by allowing the gap in the chain to be bridged. Ov~ name
for this process is Learning by Understanding Explanations (LBUE). The causal model
contains frames [Minsky, 1975| for the components of a car, with slots for inputs, outputs,
connections, parts, functions, and causal relationships between structures. For example,
one piece of the current model is:

Starter:
(isa componant) ;A starter 1a a component.
(part-of starting-system) ;Is a part of the starting system.

(input electricity battery dastery-cables) ;Electricity from battery via cables.
(parts starter-pinnion-gear starter-motor) ;PARTS: pinnion gear and starter motor.
(function spin-ection starter-pinnion-gear) ;FUNCTION: epin the pinnlon geer.

(cause (switch-action solemoid on) ;Solenoid switch causes the two gears to interlock.
(interlock startsr-pinion-gear flywheel-ring-geer))
(cause (crank starter-pinioa-gear) ;Cranking ona gear causes the othar to crank.

(crank flywheel-ring-gear))

The causal chaining process uses the causal relationships and some of the related knowl-
edge. Besides the causal model of the domain, the LBUE approach also includes a set of
likely symptom-fault pairings, as observed by Lancaster and Kolodner [1987] . These sets
of pairings associate a symptom with a problem, and are used to derive initial hypotheses
during diagnosis, and to index into the causal model at the appropriate place. The general
algorithm for the proccss is as follows:

1. From the symptom (presentad by the inatructor), chrin buckward, inferring posnible findings that
could lead to the symptom.

2. From each hypothesis (presented by the instructor), chain forward, inferring possible effects that could
be caused by the hypothesised fault.

3. If the symptom chain meets a hypothesis chain, then the reasoner has an explanation for the hypothesis,
and the gemeralization that (CAUSE RYPOTHESIS sYMPTOM) is added to the symptom fault table and
to the causal model

MARTIN & REDMOND

4. If the chains do not meet - the reasoner does not have enough information to explain the hypothesis.
In this case, it uses an explanation presented by the instructor,

(a) Chain backwards from the explanation toward the hypotheses chain.

(b) Chain forward from the explanation toward the symptom chain.

(c) Ifboth directions can be linked, then the most general relationship (CAUSE HYPOTHESIS SYMPTOM)
can be learned.

5. Add explanation to the causal model

The LBUE process results in an updated causal model. As discussed in following
section, the things that may be learned are,

1. new objects

2. new relationships between objects

3. new causal information

4. new symptom fault knowledge

After learning, diagnosis is more efficient and more powerful for the same or similar
problems, because the symptom-fault set can provide more reasonable hypotheses more
quickly and the causal model is more capable of verifying an explanation. In addition, what
the reasoner learns depends on what it already knows, since the rensoner’s ability to chain
back from the symptom and forward from the hypothesis is affected by the knowledge in
the causal model. This means that the chains could meet given one version of the causal
model, and have an unbridgable gap given another version.

The alternative to the LBUE approach is simply to remember symptom-hypothesis
pairs. However, this would require a system to have already experienced a fault in order
to diagnose it; no general knowledge is retained.

ISSUES FOR COMPLETING AND CORRECTING CAUSAL MODELS

As outlined above, a good diagnostic reasoner tries to explain why an hypothesis causes
a symptom. It is this process that allows for the recognition of different types of missing
information, and mediates the addition of knowledge to the causal model. The process
of explaining hypotheses identifies missing information that might be useful for diagnosis
because diagnosis is itself explanation, and hence requires the same information.

TYPES OF MISSING KNOWLEDGE

In general, a causal model may be missing many causal relations necessary for diagno-
sis. A reasoner will recognize that a causal relationship is missing if an explanation of a
symptom cannot be formed, either while watching an instructor or while doing diagnosis.
As well, there are situations in which an unknown causal relationship will be presented to
the reasoner. Both possibilities are simple to detect, the former when causal chaining fails
of no reasonable hypothesis is generated, and the latter, when the reasoner is actually told
that something is missing.

Another form of knowledge whose absence is easily dctected consists of referred-to facts.
In other words, when an object or general relntionship between objects s asserted, hut i
not known, then it is missing from the model. Somewhatl more interesting are implied
facts. The reasoner guesses it is missing an implied fact when a causal relationship is
stated or implied by an instructor that the reasoner believes requires a mediating fact. For
example, a reasoner may know,

(INTERLOCKED gearl gear2) & (8PIN geart ‘'clockwise) --> (SPIN gear2 ‘c-clockwise)

MARTIN & REDMOND

and an instructor may state,

(SPIX startar-geer ‘clockwvise) --> (SPIK flywbsel-ring-gear ‘c-clockwise)

From this, the reasoner will recognize that it is missing a fact (i.e., that the two gears are
interlocked). '

The final type of information that a reasoner may be missing is essentially efficiency
information. The reasoner must be able to arrive at a reasonable or correct hypothesis
quickly. If it cannot, the causal model must be modified to ensure timely and correct diag-
noses in the future. The reasoner can recognize that it is missing this kind of information
if it arrives at an incorrect hypothesis during diagnosis or if its hypotheses differ from the
instructor’s.

METHODS OF HANDLING INCOMPLETE KNOWLEDGE

An instructor’s explanation of a given hypothesis can lead to information being added
in three different ways. The explanation itself could be an unknown causal relationship
which can be added to the model directly. For example, if the instructor explained

(cause (corrcded battery-terminals) (net (comnect battary battery-terminals)))

and this relationship was not associated with either battery or battery-terminals in the
causal model, then it can be added there. A second way that the instructor’s explanation
can be used is to enable filling a gap in a causal chain. Either the explanation filled the
gap, or it was a better cue to information that was not being accessed in the causal model.
If the causal chain that can be built from the symptom (not (rRun ENnaINE)) is: ;

(not (run emgine)) ~-> (mot (epin cruaksbaft)) -->
(pot (dowm-stroke cylinder)) --> (mot (combustiom cylinder))

and the causal chain that can be built from the associated hypothesis (voT (MovasLE
BUTTERFLY-VALVE)) i8:

(oot (movable butterfly-valve)) --> (flow air carburetor low)

then there is a gap in the causal chain — the hypothesis is not fully explained. If the
instructor provides the explanation that low air flow into the carburetor leads to a low
air/gas mixture as the air passes the fuel float bowl then the following results:

(not (nonbl.fé%tlﬂlrnln)) --> (flov air carburetor low) -->
(mix uir gas less) --> (ast (combustion cylinder)) -->
(not (dewm-streke cylinder)) --> (mot (spin crankshaft)) --> (not (run engins))

¥
Not only is the causal relationship given in the explanation used in filling the gap, but
the relationship that (Mix aim aas Less) causes (vor (compustion oviinper)) is accessible when

it hadn’t previously been accessible, since the cue of carburctor is now available. Between
the two, the gap has been filled.

The third way in which the instructor’s explanation can be used is to infer a relationship
that would fill a gap in a causal chain. If the explanation doesn’t allow bridging the gap
as discussed above, causal relationships which bridge the gap, which are implied by the
expert instructor, can be inferred. The instructor implies that there is a causal relationship
between the hypothesis and symptom and that the explanation lies along this causal chain.

MARTIN & REDMOND

Gaps will be filled with inferences if there is some general knowledge that indicates a cause
is possible. For example, a cracked wire can cause low electricity because (a) wires conduct
electricity, and (b) a conduit affects what it conducts. This would be given lower credibility
than other learned relationships. There may be several plausible but inconsistent inferences
that might fill a gap; the one chosen could depend on confirmation from a human observer.

Knowledge can be added to an incomplete causal model by inferring facts from a cause.
This would occur as a result of the starter-gear ring-gear example mentioned above. In
this case, the reasoner will infer that the starter gear and ring gear are interlocked.

In a sense, inefficiently represented knowledge is a type of incomplete knowledge. The
information that is needed is in the causal model, but is not useful because it cannot be
accessed, or it is given insufficient credibility, or it leads to slow processing. For instance,
the explanation can allow the access of knowledge that couldn’t previously be accessed.
Additionally, filling a gap in a causal chain, as discussed above, is a way of dealing with
some inefficient knowledge. This allows collapsing the chain into a single causal relation-
ship, which can be used for more efficient processing. In collapsing the chains, the LBUE
method has some similaritios to Explanation-Based Lonrning (RD1) [Mitchell, Kellar, &
Kedar-Cabelli, 1986] [DeJong & Mooney, 1986|. In order to allow for proper generalization
of variables [DeJong & Mooney, 1986, a substitution list is kept that indicates to what
categories each feature in the example was matched in order to instantiate the causal re-
lationships. The collapsed chain then uses the most general category for a feature as the
variable name in the antecedent or consequent of the new causal relationship.

INCONSISTENT KNOWLEDGE

Since new information is being added to the causal model, there is a possibility that a
contradiction may occur. A few types of contradiction are possible. In one case, the samne
condition could be believed to cause contradictory effects such as:

(corroded battery-terminals) --> (compect battery battery-tsrminals)
& (corroded battery-terminals) --> (not (comnect battery battery-terminals))

Alternatively, a chain might be possible from known information, such that a condition
indirectly causes a contradiction of the condition.

Contradictions may not be detected immediately, though, because the causal informa-
tion is distributed throughout the causal model, and because an arbitrary amount of causal
chaining may be neceasary to detect the contradiction.

In cases where the new input is found to be inconsistent, the source of the information
can be used to'decide what to believe. Knowledge from the expert is given precedence
over older information. Information that contradicts the expert is either removed or its
strength is decreased, depending upon implementation.

IMPLEMENTATIONS

lmplomontation of the goneral modol described ubove has followed two parallel pathe.
This decision was made because the research is exploratory, and therefore should generate
several alternative approaches to the problem, and highlight different inconsistencies and
difficulties with the model.

EDSEL-1 is based upon a simple active semantic net, similar to local connectionist
models such as McClelland and Rumelhart’s [1981] interactive activation model. EDSEL-

MARTIN & REDMOND

2 uses an enhanced version of the causal model described in Allison {1987} . Although the
process in both implementations closely follows the general model presented above, there
are two significant differences. First, when a causal gap is present but no explanation fills
that gap, EDSEL-1 uses generic knowledge about what affects what, whereas EDSEL-2
uses a less general but far simpler notion of filling gaps between recently proposed forward
chains from hypotheses and backward chains from the symptom. The first method is
a more flexible metric for evaluating whether a given causal gap should be filled, and
therefore should lead to more reliable causal relationships. The second difference involves
where causal information is stored and how it can be accessed. EDSEL-1 does not address
the issue of limited availability of causal relationships, whereas EDSEL-2 allows the more
realistic situation in which causes are not maximally indexed when they enter the system.
That is, they may not necessarily be retrieved when needed unless the proper cues are
present. This is a more realistic and efficient approach for a system with a very large
memory.

RELATED WORK

Rajamoney and DeJong [1987] has specifically addressed the problem of inconsistencies or
missing information in & causal model for simulation. If more than one simulation is possi-
ble, his system will experimentally search for disambiguating features in the envirc 1ment.
Although this approach is clearly useful, it does not allow for modification of the general
causal information in the model. It concentrates on quantitative values for the current
situation, and does not learn any general knowledge.

As has already been noted, in order to update causal models, the current effcrt uses
an explanation based technique that is in some ways similar to those of DeJong and
Mooney [1986] and Mitchell et al. [1986] . Specifically, in diagnosis, a causal chain must
be discovered in a potentially very large network of causal information. EBL can be
profitably used to permit instruction to produce “short cuts” in that network.

Classical EBL, however, does not produce enough learning when the causal network is
incomplete. This may be remedied by the learning by failing to explain (LBFE) [Hall, 1986]
technique of isolating the information that is present in the input but is not understood,
and subsequently adding it to the existing EBL system. Although the current model has
not yet been described in exactly these terms, it is in fact an example of LBFE. It differs
from Hall’s work by proposing that the information that must be added in the absence
of an explanation is not necessarily explicitly represented in the input. Also, the current
effort presents a domain independent notion of LBFE that describes how potentially any
diagnostic causal net might grow, whereas Hall’s effort was, in his own view, domain
specific.

One of the methods that is used to augment incomplete networks in the current ap-
proach is to use relationships that are more general than causes in order to infer causation.
For exnmple, an action and a state change that relate to the same object tend to be causally
related. This technique was originally used by Pazzani [1987] and a similar approach was

suggested by Russell [1987] .

REFERENCES
CONCLUSIONS AND FUTURE DIRECTIONS

This paper has discussed the LBUE paradigm for dealing with an incomplete or inconsistent
causal model in the training of car mechanics. The main contribution of the current effort
is in the ability to accept new knowledge and incorporate it into the causal model, while
using it to understand an explanation and form a new generalization.

There are several directions for future research. First, in diagnosis, causal chaining
is not the only strategy used, though it was the most common in the protocols. The
explanations used by the instructor reflect several different strategies. For this reason, and
to allow strategies to be learned and improved, diagnostic strategies must be explicitly
represented. Some initial work has been done on this representation.

Second, better representation of the causal knowledge is needed to take full advantage
of the inferencing possible from qualitative models. The aim is to use more levels of
abstraction to allow reasoning at whatever level may be appropriate. Third, more learning
may be possible in this paradigm if Case-Based Reasoning [Kolodner & Simpson, 1984}, a

method of uaing previous episodes and evaluation of their results to suggest solutions to
new problems, could be integrated.

REFERENCES

References

Allison, K. R. (1987). Use of a working model in fault diagnosis. In Proceedings of the £5th Annual Conference of
the Southeast Region ACM.

DeJong, G. & Mooney, R. (1986). Explanation based learning: an alternative view. Machsine Learning, 1, 145-176.

de Kleer, J. & Brows, J. S. (1981). Mental models of physical mechanisms and their acquisition. In J. R. Anderson
(Ed.), Cognitive Skills and Their Acquisition. Hillsdale, NJ: Lawrence Erlbaum.

Hall, R. (1986). Learning by falling to explain. In Proceedings of the National Conference on Artificial Intelligence.

Kolodner, J. & Simpeon, R. (1984). A case for case-based reasoning. In Proccedings of the Sizth Annual Conference
of the Cogrstive Scsemee Soeialy. .

Kuipers, J. (1984). Commonsense reasoning about causallty: deriving behavior-from atructure. Artificial Intelli-
gence, £4, 169-208.

Lancaster, J. & Kolodner, J. (1987). Problem solviag i a natural task as a function of exparience. In Proceedings
of the Ninth Arnmuel Conference of the Cogmative Science Sociely.

Lancaster, J. (personal communieation). August, 1987,

McClellaad, J. n& Ramelhart, D. E. (1981). An Intsractive activation model of context effects In letter perception:
part 1. aa weqil\t-’ol baaic 8ndings. Psychological Review, 88, 375-407.

Minsky, M. (1978). A framework for representing knowledge. In P. H. Winston (Ed.), The Paychology of Computer
Vision. New York: McGraw-Hill,

Mitcheil, T, M., Kellar, R. M., & Kedar-Cabelll, 3. T. (1086). Explanation based learning: an unifying view.
Machine Loarning, 1, 47-80,

Passani, M. (1987). Inducing caueal ard social theories: a prerequisite for explanation-based learning. In Proceedings
of the Fourth Annwal Internetional Wordohop on Machine Loarning.

'*llil{"'ﬂ'ny. 8. A. & Dalong, (1. F. (1987), Ackive ambiguily reduction: An seperimental design approach o lractuble
qualitative reasonémg. Tochnical Report UILU-ENG-87-2226, Unlversity of Illinols at Urbana-Champalign.

Redmond, M. & Martin, J. (1988). Lsarning by understanding explanations. In Proceedings of the 26th Annual
Conference of the Sewtheast Region ACN,

Russell, S. J. (1987). Analogy aad single-instance generalisation. In Proceedings of the Fourth Annual International
Workshop on Mackine Learning.

I/\ A’CM g'pzci.ﬂ, ’l:*('&rcﬁf" 6/901[0 on /{fﬁ#c/a(I/xfg///y‘@nk@ [§I6M

S eu'”\(Tssue gn lf/\ou/i@ﬂ?e Augwst%/‘ /
[7 Acquiring Knowledge by Explaining
Observed Problem Solving!

Joel D. Martin and Michael Redmond
Georgia Institute of Technology
E-mail: joel@gatech.edu, redmond@gatech.edu

Keywords: apprenticeship, Instruction, explanations, model-based, automatic

Abstract

Learning by Understanding Explanations {LBUE)
can be an important tool for automatic knowl-

edge acquisition in diagnostic domains. It takes

fuller advantage of an expert’s knowledge than

some more automatic approaches and uses model-
based reasoning to reduce brittleness. LBUE

specifically integrates the learning of efficiency

information as in Explanation Based Generaliza-

tion (EBG) with further learning of the causal

model. Expert protocols are coded into a ma-

chine readable form and then input to the LBUE

process. The result of learning is that the system

becomes capable of solving the same problem in

the future and is also able to apply any newly

learned causal model information to novel but

similar cases.

1 Introduction

Experts use many rules to easily wade through the com-
plexities of their domain. However, capturing these
rules for expert systems is a difficult, time consuming
task. Traditionally, the rules have been handcoded from
problem solving protocols or through some other inter-
actions with the expert. A natural inclination of expert
systems practitioners when faced with this task is to
try to totally automate the knowledge acquisition pro-
cess. For example, several approaches have considered

!This research was supported by the Army Research Institute
for the Behavioral and Social 8ciances under Contract No. MDA-
903-86-C-173. The authors wish to thank Janet Kolodner for her
advice and guidance, and Stepher Robinson and anonymous re-
viewers for helpful comments on earlier versions of the paper.

v

the possibility of having an intelligent learning system,
like ID3 [Quinlan, 1983], discover the appropriate rules
by examining solved examples. These approachzs, how-

. ever, ignore the value of the expert as a guide for learn-

ing. Having a Londoner guide one through the streets of
London is far superior to an extensive search through all
possible routes from one point to another. A more ap-
propriate automatic solution to knowledge acquisition
should take advantage of an expert's experience. This
paper presents such a system, EDSEL (Explanations
and Diagnosis: Symptoms, hypotheses, and Explana-
tions for Learning}, that acquires diagnostic knowledge

_ through a process termed Learning by Understanding

Explanations (LBUE) (Redmond & Martin, 1988; Mar-
tin & Redmond, 1988|.

The obvious analogy of this type of knowledge acqui-
sition with human learning is ‘apprenticeship’, where a
novice becomes more expert by learning from watching
an instructor. Learning apprentice systems [Mitchell,
1985; Wilkins, 1988], in general, allow incremental learn-
ing from examples, but also allow the instructor to guide
what is learned. This means that the system learns
more than simple associations between problem and so-
lution. ODYSSEUS [Wilkins, 1988], for example, learns
something about what questions to ask. This extra
learning is achieved by using an underlying model to
explain some behavior of the experts and to use that
explanation as a hint for learning. Some systems use
the explanation to make the model information more
efficient, while others actually allow improvements of
the model. Both approaches are clearly necessary: in-
creased efficiency leads to improved performance and
a flexible model permits continuous learning and less
brittleness. No systems besides the one described below
have yet demonstrated both of these types of learning.

The apprenticeship system EDSEL receives input of
three types: symptoms, an expert’s hypotheses, and
partial expert explanations. Using a background causal
model, it attempts to explain how a given hypothesis
can literally cause the symptom. If the model is suf-
ficiently complete to allow the explanation, then that
symptom and hypothesis can be more efficiently paired
to improve later performance. If, on the other hand, the

SIGART Newsletter, April 1989, Number 108, Knowledge Acquisition Special Issue Page 77

model is incomplete, the system uses partial explana-
tions and known constraints to augment the model and
allow full explanation of the given hypothesis. EDSEL’s
algorithm allows it to use expert guidance to increase
efficiency, to permit continuous learning, and to reduce
system brittleness.

2 Protocols

While this approach shares the idea of using verbal pro-
tocols of an expert’s problem solving with many knowl-
edge acquisition efforts [Johnson 1983, the use of the
protocols varies substantially from other approaches.
EDSEL, and the learning method LBUE which it em-
bodies, were inspired by the protocol analysis work of
Lancaster and Kolodner (1987, 1988|. They took verbal
protocols of car-mechanics students trying to solve prob-
lems, and of the instructor solving the same problems
afterwards for the students’ benefit. This is the normal
mode of teaching for the school, after background class-
room instruction. It is a close relative to apprenticeship
learning. The statements in the protocols were each
coded as one of, hypotheses, rules, information gather-
ing, observations, and restatements. From these, Lan-
caster and Kolodner identified five types of learning ob-
served in the students, Learning by understanging ezxpla-
nations, Active gap filling, Learning from tnterpreting
feedback, Abstraction, and Case-Based Reasoning. We
have focused, to this point, on learning by understand-
ing explanations. To permit LBUE to learn from the
instructor without natural language processing capabil-
ity, we transform the instructor’s protocols into machine
analyzable form, specifying symptoms, hypotheses, ex-
planations of hypotheses, tests, and faultsin a predicate
notation. This serves as input to the LBUE process, to
allow knowledge to be added to the background causal
model, and to permit collapsing of that knowledge into
rules for greater efficiency. The system avoids the need
to manually extract rules that were implicit, and the
need to manually infer steps that were skipped in the
instructor’s report of his/her problem solving.

The process of coding the instructor’s protocols into

machine analyzable form is & manual process, but not a -

difficult one. The moef imiportant thing is to establish a
vocabulary of predicates for the domain, which can be
used for expressing normal function and malfunctions.
For example, in the auto-mechanic domain some of the
predicates included: adjacent, amount, available, bent,
brokeﬂf, charge, clean, click, clogged, closed, compres-
sion, conduct, connected, contains, corroded, covered,
cracked, crank, crossed, generated, hesitate, pressure,
resistance, and tension. It is important to get cover-
age without redundancy, so that the relations can be
expressed and that similar things are expressed simi-
larly. The predicate vocabulary can then be used in
coding the protocols and the initial causal model. Given
the vocabulary, coding the protocols is only a matter
of identifying the symptoms, hypotheses, and explana-

SIGART Newsloetter, April 1989, Number 108, Knowledge Acquisition Spacial Issus

tions of hypotheses, and expressing them in terms of the
predicates and components. As will be seen, the com-
ponents do not even necessarily have to be included in
the model.

We will show one example from our domain to demon-
strate this. One protocol contained the following:

“Drivability complaint is that the engine turns
over very slow while cranking. ... See, these
connections to the battery could be loose,
could be all corroded, right? That's comn-
mon with battery terminals. You might have
a voltage drop between post and clamp. We
may have a loose cable on the starter ... So,
the problem that we have is either in the
charging system or starting ...”

This was put into a variable for input to EDSEL as:

(setq *protocol#13s
'((SYM (Slow (Crank Engine-system)))
(HYP H1 (Not (Connected Battery Battery-Cables)))
(HYP H2 (Corroded Battery-Terminals))
(EXP H2 (High (Frequency
(Corroded Battery-Terminals))))

(EXP H2 (Cause

(Corroded Battery-Terminals)

(Low (Contains Battery-Cables Voltage))))
(HYP H3 (Loose (Connected Battery-Cableas Starter)))
(HYP H4 (Malfunction Charging-System))
(HYP H6 (Malfunction Starting-Syatem))
»

The success of this approach is especially encourag-
ing because the protocols used were not taken with this
approach in mind. In future efforts to use this tech-
nique, we would want to emphasize to the instructor
that s/he especially report all hypotheses, along with a
brief explanation of those hypotheses.

3 Causal Model

The causal model represents components of the car in
a manner roughly equivalent to frames [Minsky 1975}
or objects [Goldstein 1980]. Information about a com-
ponent includes what it is part of, what its parts are,
its inputs and outputs, and the causal relations between
it and other components. For example, Figure 1 shows
a representation of a starter. An important advantage
of using the model is that besides allowing the learning
of rules, the problem solver can fall back on the model
when there are no available rules for a particular prob-
lem, thus making a more robust, less brittle problem
solver. Chandrasekaran and Mittal’s [1982] MDX was
similar in that it generated rules from a model of normal
function, which made it less brittle. However, it did not
continue to improve its model.

The system is given an initial model roughly equiv-
alent to the classroom instruction given the technical
school students. This information can come from an in-

Page 78

troductory text, and 18 mainly information about nor-

Starter:

(isa component)

;A starter is a component.

(part-of starting-system)

;Part of the starting system.

(input electricity battery battery-cables)
;A starter receives electricity from
;the battery via battery cables.

(parts starter-pinion-gear starter-motor)
;A starter has parts: pinion gear and
;starter motor.

(function spin-action starter-pinion-gear)
:The function of the starter is to
;spin the pinion gear.

(cause (switch-action solenoid on)

(adjacent starter-pinion-gear
flywheel-ring-gear))
:Setting the solenoid switch causes
;the pinion gear and the flywheel gear
;to become adjacent.

(cause (crank starter-pinion-gear)

(crank flywheal-ring-gear))
;Cranking the pinion gear causes the
;flywheel gear to crank.

Figure 1: A Generalized Mental Model
Definition of a Starter.
mal function. It is expressed using the vocabulary of
predicates established for the domain. It’s not neces-
sary for this information to be complete, the system can
learn even with a minimal amount of knowledge. There-
fore this approach does not assume that the ‘student’
retains all the knowledge presented in the classroom. It
does, however, follow the intuition that the more knowl-
edge the ‘student’ has, the better the learning will be.

A student with more knowledge can learn more specific .

new knowledge from the experts’ examples.

In the initial model, several types of knowledge can
be missing. These include:

e Causal relationships
¢ Other relationships between objects
¢ Objects.

This also includes pg ﬁrg&hiza.tion of the knowledge
that would lead to ineffitiency in diagnosis. The LBUE
process allows learning of each of these types of knowl-

edge, a& well as allowing retraction of incorrect pieces
of knowledge.

3.1 Causal Relationships

The most important type of missing knowledge is ‘causal
relations’. In general, a causal model may be missing
many causal relations that are necessary for diagno-

sis. A reasoner wiil recognize that a causal relationsaip
is missing if an explanation of a symptom cannot be

formed, either while watching an instructor or while ac-
tually doing diagnosis. As well, there are situations in
which an unknown causal relationship will be presented
to the reasoner. Both possibilities are simple to detect,
the former when causal chaining fails or when no rea-
sonable hypothesis is generated, and the latter, when
the reasoner is actually told that something is missing.

For instance, suppose that the instructor presents
a situation in which the car has stalled. The reasoner
attempts to determine what could lead to the symp-
tom. This resembles a backward chain. In a particular
circumstance, the reasoner could be missing causal re-
lations and hypothesize only as far as that there might
not be combustion occurring in the cylinders:

(not (run engine)) --> ;atalled engine
(not (spin crankshaft)) -->
(not (down-stroke cylinder)) -->
(not (combustion cylinder))

The instructor then provides the hypothesis that the
butterfly valve of the choke assembly is stuck. The
reasoner works forward trying to determine what that
would cause. This resembles a forward chain. Because
of causal knowledge missing from the reasoner’s model,
it only gets as far as a lack of air flow into the carbure-
tor:

(not (movable butterfly-valve)) -->
(low (flow air carburetor))

In this case, the forward and backward chains do
not meet, and the reasoner does not know or cannot
retrieve any causal relationships that might connect the
chains. No complete explanation has been found for
the hypothesis. However, if the instructor provides the
explanation that low air flow into the carburetor leads to
a low air/gas mixture as the air passes the fuel float bowl
then the following complete explanation could result:

(not (movable butterfly-valve)) -->

(low (flow air carburetor)) -->
(low (mix air gas)) -->
(not (combuastion cylinder)) -->
(not (down-stroke cylinder)) -->
(not (spin crankshaft)) -=>

(not (run engine))

This example demonstrates how a new causal rela-
tionship may be added, (low (flow air carburetor)) =
(low (mix air gas)), and how an existing causal rela-
tionship that was not accessed or was not known to
apply, (low (mix air gas)) = (not (combustion cylin-
der)), can be used. The system, therefore, understands
the instructor’s hypothesis, and is able to learn a new
symptom-fault association and add the relationships

SIGART Newsletter, April 1989, Number 108, Knowlsdge Acquisition Special Issue Page 79

(cause (low (flow air carburetor))
(low (mix air gas)))

(cause (not (movable butterfly-valve))
(not (run engine)))

to the mental model.
In the other case, when the explanation,

(cause (cracked diastributor-cap)
(contains distributor-cap moisture))

contains knowledge that the mental model does not con-
tain, the system only needs to check the model to realize
that the information is missing.

3.2 Other Relationships

Another form of knowledge whose absence is easily de-
tected consists of referred-to facts. These facts can
involve various non-causal relationships. Specifically,
when an object or general relationship between objects
is asserted, but is not known, then it is missing from
the model. Somewhat more interesting, though, are
when such relationships are merely implied. The rea-
soner guesses it is missing an implied fact when a causal
relationship is stated or implied by an instructor that
the reasoner believes requires a mediating fact. For ex-
ample, a reasoner may know,

(INTERLOCKED geari gear2) &
(SPIN geart 'clockwige) -->
(SPIN gear2 'c-clockwise)

and an instructor may state,

(SPIN starter-gear ’'clockwise) -->
(SPIN flywheel-ring-gear 'c-clockwise)

From this, the reasoner will recognize that it is missing
a fact (i.e., that the two gears are interlocked).

3.3 Objects

When the model does not know of the existence of an
object, such as a component to the car, it becomes obvi-
ous when a hypothesis, symptom or explanation refers
to the object and the system can not retrieve any infor-
mation about the object when it tries to form an expla-
nation. As long as-the system does not need to reason
about the object it can remain blissfully ignorant of its
existence, thus avoiding the need to understand atoms
and molecules.

3.4 Inefficiency

In a sense, inefficiently represented knowledge is a type
of incomplete knowledge. The information that is needed
is in the causal model, but is not useful because it can-
not be accessed, or it is given insufficient credibility, or
it leads to slow processing. In this situation, the model
is said to be missing efficiency information. The rea-

SIGART Newslgttor,

April 1989, Number 108, Knowledge Acquisition Special Issue

soner must be able to arrive at a rcasonable or correct
hypothesis quickly. If it cannot, the causal model must
be modified to ensure timely and correct diagnoses in
the future. The reasoner can recognize that it is miss-
ing efficiency information if it arrives at an incorrect
hypothesis during diagnosis. Also, if it can build a com-
plete causal chain without outside help during learning
then it has enough information to improve its efficiency
by including a new association.

4 LBUE - General Process

4.1 Introduction

Learning by Understanding Explanations (LBUE) stems
from the notion that if a reasoner can explain a teacher’s
actions, then s/he can more appropriately generalize
what is learned. There is a problem, however, when
the reasoner cannot explain such input. The best solu-
tion to this problem is to add the information necessary
to explain a given case and depend on that new infor-
mation being applicable in novel but similar cases.

The EDSEL LBUE research specifically explores sys-
tem understanding of an instructor’s hypotheses and
subsequent explanations in a diagnostic domain. The
system receives the expert’s sequence of actions as an
input, a partial example is shown in Section 2. When
the system is attending to an expert’s diagnosis, it must
make inferences from the given information to fill in the
omitted information. In general, the instructor cannot
explain everything at every level of detail. One way to
infer the missing information is to attempt causal chain-
ing. When the system receives a symptom, it builds
backward chains to all possible findings that could lead
tothe symptom. When it receives a hypothesis, it builds
forward chains to all possible findings that could be
caused by the hypothesized fault. If forward and back-
ward chains meet, then the student has an explanation
for the hypothesis and thereby has filled in the omitted
information. The system can collapse the chain into
a fault and symptom pair and save that as a symp-
tom fault set in the mental model. The collapsed chain
could then be used more efficiently in future, similar
situations.

Often a system will not have enough information to
explain the hypothesis. In this case, the instructor’s
explanation can be useful. First, if the explanation rep-
resents a new causal relation, such as X causes Y, it can
be added directly to the mental model with high credi-
bility. Second, it may allow bridging a gap to complete
a causal chain, thus enabling the system to add a col-
lapsed causal chain as a new association in the causal
knowledge, like in EBG. Third, when the explanation
does not complete a chain, the system may still infer
that the hypothesized fault causes X, and that Y causes
the symptom, though there may be intermediate causal
links.

As has been noted by many researchers [Mitchell et

Page 80

al., 1986], EB methods do not generate any knowledge
_that the system does not already have; rather, existing
knowleage is reorganized to be more useful. In collaps-

ing the chains, the LBUE method has some similarities
to Explanation-Based Generalization (EBG) [Mitchell
et al., 1986} and Explanation-Based Learning (EBL)
‘DeJong & Mooney 1986|. The student has used avail-
able knowledge to form an explanation, which is then
stored for later use, somewhat like a macro operator in
STRIPS [Fikes et al., 1972]. The LBUE concept goes
beyond explanation-based methods by being able to use
new information to create a chain when it would not be
possible otherwise.

4.2 Algorithm

LBUE, as applied to learning automobile mechanics from
examples, requires a very straightforward algorithm. The
algorithm must process symptoms, hypotheses, and ex-

planations, and must add to the mental model when

possible. An outline of this algorithm follows.

1. From the symptom, chain backward toward pos-
sible findings.

2. From each hypothesis, chain forward toward pos-
sible effects.

3. If the symptom chain meets a hypothesis chain,

then the generalization that (cause hypothesis symp-

tom) is added to the symptom fault table and to
the mental model.

4. If the chains do not meet,
(a) Chain backwards from the explanation to-
ward the hypotheses.

(b) Chain forward from the explanation toward
the symptom.

(c) If both directions can be linked, then the
most general relationship (cause hypothesss
symptom) can be learned.

5. Add explanation to the mental model.

The inputs to the algorithm are the coded protocol
and an initial model. The output is an updated mental
model and a cognitive trace of the learning process. The
following knowledge may be learned: ’

1. new objects,

2. structural relationships between objects,
3. new cadsal information, and

4. new symptom fault knowledge.

After this type of learning, diagnosis is more effi-
cient and more powerful for the same or similar prob-
‘ems, because the symptom-fault set can provide better
hypotheses more quickly and the mental model is more

‘GART Newsletter, April 1989, Number 108, Knowledge Acquisition Special Issue

B e e oo o .

~ capable of V'erii'yiﬁg an explanation.

4.3 Example 1

The general reasoning method is demonstrated by the
following two examples. For clarity, the examples will
always present a single path through the causal model,
rather than the tree-like search that is more typical. The
first of these example diagnoses demonstrates learning
with just the symptom and hypothesis, without requir-
ing an explanation. The symptom that the instruc-
tor reports is slow cranking of the engine. The sys-
tem chains backward hypothesizing that the crankshaft
is spinning slowly, that the starter motor is spinning
slowly, that the battery is not generating much electric-

ity:

(slow (crank engine)) -->
(slow (spin crankshaft)) -->
(slow (spin starter-gear)) -->
(slow (spin starter-motor)) -->
(low (contains starter-wire current)) -->
(low (generate battery electricity))

The system achieves this backward chaining by using
information about normal function and how, in general,
modification of that normal function modifies the rest
of the mechanism.

The instructor then suggests the hypothesis that a
cracked wire can cause the observed symptom of slow
cranking of the engine. The system chains forward, in-
ferring that the battery cable may be carrying less than
normal current, that the starter receives less power, and
that the wire in the starter receives less electricity:

(cracked battery-cable) -->
(low (contains battery-cable current)) -->
(low (input starter current)) -->
(low (contains starter-wire current))

In this example, the symptom and hypothesis chains
meet, so an explanation is not required. The system
understands the instructor’s hypothesis, and is able to
learn a new symptom-fault set and add the relationship

(cause (cracked battery-cable)
(slow (crank engine)))

to the mental model.

4.4 Example 2

A second example will further illustrate the ideas. The
instructor may suggest a hypothesis that a cracked dis-
tributor cap can cause the observed symptom of the en-
gine cranking but not starting. The system may know,
from whatever sources, that for a car to start, the starter
must turn, and combustion must occur. The system
may further know that for combustion to occur, there
must be fuel mixed with air in the cylinder, and a spark

from the spark plug. The system might chain backwards

from the symptom:

Page 81

(not (start engine)) --»>
(not (combustion cylinder)) -->
(not (ignite spark-plug))

It might not know what a cracked distributor cap can
cause, so the system does not understand why it was
hypothesized. In other words, the system might not be
able to chain anywhere from (CRACKED DISTRIBUTOR-
CAP).

The instructor then explains that a cracked distribu-
tor cap can allow moisture to collect inside the distrib-
utor cap. This causal relationship was not previously
known to the student, and it couid not have been gen-
erated without outside input. The system might be able
to complete a causal chain:

(cracked distributor-cap) -->
(contains distributor-cap moisture) -->
(low (input spark-plug electricity) --»
(not (ignite spark-plug)) -=>
(not (combustion cylinder)) -=>
(not (start engine))

Now the system understands the hypothesis (and the
explanation). It can learn the causal relationship of
“cracked distributor cap” causes “engine cranks but won’t
start”. If the student was missing the fact that mois-
ture in the distributor cap can cause Jess electricity to
reach the spark plug, he may still be able to infer that
fact based on the explanation having been given by the
trusted expert in conjunction with general knowledge
about water’s effect on electricity. In this case, the
explanation not only extends the causal chain, it also
assists the system in directing the search for relevant
causal relationships.

5 Related Work

Wilkins [1988] uses a somewhat similar method of learn-
ing from instruction, that also relies on a model to ex-
plain the instructor’s problem solving. Both LBUE and
Wilkin’s approach identify an opportunity to learn by
an inability to find such an explanation. A difference
is that ODYSSEUS explains actions by linking them to.
hypotheses while LBHE explains hypbtheses by linking
them to symptoms. More dramatically, we also learn
when we can find an lanation, by collapsing a causal
chain into an association or rule.

Other related work includes Mitchell et al’s [1985]
Learning Apprentice (LEAP) system. LBUE and LEAP
are similar in that they both use explanations to prop-
erly modify knowledge when given instruction. They
differ on how the explanation is related to the knowl-
edge that is learned. LEAP uses two distinct types
of knowledge ~ domain knowledge and implementation
knowledge — whereas, LBUE has a single type that is
used both for explanation and for performance. LEAP
uses its domain knowledge to learn new implementa-

SIGART Newsletter, April 1989, Number 108, Knowledge Acquisition Special Issue

tion rules. LBUE allows the system to improve its
explanation capability because what is learned can be
used in future explanations. A related difference is that
LBUE handles incomplete/imperfect domain theories,
while LEAP assumes a complete theory.

EBL {Delong and Mooney 1986] and [Mitchell et
al. 1986] also uses explanations derived using a domain
model in order to learn new associations. However, it
cannot learn any new domain model knowledge. This
means that EBL is not appropriate when the causal
model is incomplete. Hall’s [1986] learning by failing
to explain (LBFE) approach was an attempt to rem-
edy this problem. The technique involves isolating the
information that is present in the input but is not un-
derstood, and subsequently adding it to the existing
EBL system. Our approach differs from Hall’s work
by proposing that the information that must be added
in the absence of an explanation is not necessarily ex-
plicitly represented in the input. Also, the current ef-
fort presents a domain independent notion of learning
by attempting to explain that describes how potentially
any diagnostic causal model might grow, whereas Hall's
effort was, in his own view, domain specific.

Rajamoney and DeJong {1987 have specifically ad-
dressed the problem of inconsistencies or missing infor-
mation in a causal model for simulation. If more than
one simulation is possible, their system will experimen-
tally search for disambiguating features in the environ-
ment. Although this approach is clearly useful, it does
not allow for modification of the general causal infor-
mation in the model. It concentrates on quantitative
values for the current situation, and does not learn any
general knowledge. It also does not address improving
efficiency of problem solving by generating any associa-
tions or rules.

Chandrasekaran and Mittal [1982], used a causal
model of a2 medical domain to generate compiled rules
or associations. However, as in EBL, they do not add
any truly new knowledge.

6 Conclusion and Future
Directions

LBUE is an important tool for automatic knowledge
acquisition in diagnostic domains. It takes fuller ad-
vantage of an expert’s knowledge than some other ap-
proaches and uses model-based reasoning to reduce brit-
tleness. LBUE specifically integrates the learning of ef-
ficiency information as in EBG with causal model learn-
ing.

Protocols can be taken from an expert, coded into a
machine readable form and then input to an LBUE pro-
cess. The system would then be capable of solving the
same problem in the future, but would also be able to
apply new causal model information to novel but similar
cases.

Future directions for LBUE research include extend-

Page 82

ing EDSEL and applying LBUE to other domains. First,
increasing the number of behavioral types that EDSEL
is capable of explaining beyond hypotheses to tests will
allow the system to learn more about the diagnostic
situation. Second, applying the method to other diag-
nostic domains, possibly a design domain, will help in
generating a truly domain independent learning process.

References

Chandrasekaran, B. & Mittal, S. (1982). Deep versus compiled
knowledge approaches to diagnostic problem-solving. In Pro-
ceedings of the National Conference on Artificial Intelligence.

Delong, G. & Mooney, R. (1986). Explanation based learning:
an alternative view, Machine Learning, I, 145-176.

Fikes, R. E., Hart, P., & Nilsson, N. J. (1972). Learning and ex-
ecuting generalized robot plans. Artificsal Intelligence, 3, 251~
288.

Goldstein, 1. P. & Bobrow, D. G. (1980). Extending object-
oriented programming in smalltalk. In Proceedings of the 1980
LISP Conference.

Hall, R. (1986). Learning by failing to explain. In Proceedings of
the National Conference on Artificial Intelligence.

Johnson, P. (1983). The expert mind: a new challenge for the
information scientist. In T. M. Bemelmans (Ed.}, Beyond Pro-
ductivity. Netherlands: North Hoiland Publishing Co.

Lancaster, J. & Kolodner, J. (1987). Problem solving in a natural
task as a function of experience. In Proceedings of the Ninth
Annual Conference of the Cognitive Science Socsety.

Martin, J. & Redmond, M. (1988). The use of explanations for
completing and correcting causal models. In Proceedings of the
Tenth Annual Conference of the Cognitive Science Soctety.

Minsky, M. (1975). A framework for representing knowledge. In
P. H. Winston (Ed.), The Psychology of Computer Vision. New
York: McGraw-Hill.

Mitchell, T. M., Kellar, R. M., & Kedar-Cabelli, S. T. (1986).
Explanation based learning: an unifying view. Machine Learn-
ing, 1, 47-80.

Mitchell, T. M., Mahadevan, S., & Steinberg, L. I. Leap: 2
learning apprentice for visi design. In Proceedings of the Ninth
International Joint Conference on Artificsal Intelligence.

Quinlan, J. R. (1983). Learning efficient classification procedures
and their application to chess end games. In R. Michalski, J.
Carbonell, & T. Mitchell (Eds.), Machsne Learnsng: An Arti-
fistal Intelligence Approach, Volume I. Palo Alto, CA: Tioga.

Rajamoney, S. A. & DeJong, G. F. (1987). Active ambiguity
redection: An ezperimental design approach to iractable qual-
ttative reasoning. Technical Report UILU-ENG-87-2225, Uni-
versity of Illinois at Urbana~Champaign.

Redmond, M. & Martin; J. {1988). Learning by understanding
explanations. In Procsedings.of the £6th Annsal Conference of
the Southeast Region: g

5 >
Wilkins, D. C. (1988). Khigwladgs base refinement using 2ppren-
ticeship learning techniques. In Proceedings of Seventh National
Conference on Artificial Intelligence.

SIGART Newsletter, April 1989, Number 108, Knowiedge Acquisition Special issue Page 83

Appendix E
CELIA
The Cognitive Model
The Computational Model
Case Representation
Selected Papers

Redmond, M. (1989). Learning from others™ experience: Creating cases from examples.
In Proceedings of the DARPA Case-Based Reasoning Workshop, Morgan Kaufmann.

Redmond, M. (1989). Combining Explanation Types for Learning by Understanding
Instructional Examples. In Proceedings of the 11th Annual Conference of the Cognitive
Science Society.

Redmond, M. (1990). Distributed cases for Case-Based Reasoning: Facilitating Use of
Multiple Cases. In Proceedings of AAAI-90.

Redmond, M. (1990). What Should I Do Now? Using Goal Sequitor Knowledge to
Choose the Next Problem Solving Step. In Proceedings of the 12th Annual Conference of
the Cognitive Science Society.

Redmond, M. (1991). Improving Case Retrieval Through Observing Expert Problem
Solving. In Proceedings of the 13th Annual Conference of the Cognitive Science Society.

Sy

il -

;

_ ! o~ - ! P Ay Ay
[//g C@C’c{(”mﬁ S 95 _ase-” &J%a(K‘C/‘ A A QI S
/ :

/

LEARNING FROM OTHERS’ EXPERIENCE:
CREATING CASES FROM EXAMPLES !

Michael Redmond
School of Information and Computer Science
Georgia Institute of Technology
Atlanta, Georgia 30332-0280

ABSTRACT

Cases used for case-based reasoning do not have to be cases that the reasoner itself has solved, or that
the programmer has entered. Cases can be acquired by observing expert problem solving. When a reasoner
saves a case from its own problem solving, the reasoner already knows what it was trying to accomplish
in that episode. In order for a reasoner to use examples it has seen as cases, it must actively process the
examples in order to explain and understand the example. The reasoning required in order to acquire a case
depends to some extent on how a case is to be represented. Given our theory of case structure, several tasks
are necessary in order to interpret the example and store it as a case: inferring the goal behind the observed
actions; inferring the relations between pieces; and keeping track of how the actions taken affect the current
problem solving context. We have built a system which observes a expert solve a problem in the domain of
automnobile diagnosis. Among other learning techniques, the system creates cases, in pieces, to be stored for
use in later problem solving.

INTRODUCTION

People learn much of what they know from instruction, and the presentation of examples is an important
part of instruction in many domains. Students who actively process examples reinforce their knowledge and
understanding of the domain principles. They learn how to apply the domain principles. They also may
retain details about particular examples, that they can later use to solve other problems. Thus we see that
cases used for case-based reasoning do not have to be cases that the reasoner itself has solved.

When a reasoner saves a case from its own problem solving, the reasoner already knows what it was
trying to accomplish in that episode. In order for a reasoner to use examples it has seen as cases, it must
actively process the examples in order to explain and understand the example. The actions taken by the
instructor and seen by the learner do not necessarily map easily and directly into the learner’s representation
structure for cases. Some inferencing is required in order to interpret the actions and to save them in a form
that will be useful for solving future problems.

The reasoning required in order to acquire a case depends to some extent on how a case is to be rep-
resented. In our theory, cases are stored in pieces, or snippets [Kolodner 1988]. This allows the reasoner
to use small fragments of cases in its reasoning rather than having to wade through large monolithic cases.
Each piece is organized around the pursuit of one particular goal, and there are links between the pieces
that perserve the structure of the diagnosis. Since the problem solving context changes during the diagnosis,
each case piece stores the problem solving context as it was at that time.

Given this theory of case structure, several tasks are necessary in order to interpret the example and
store it as a case:

1. Inferring the goal behind the observed actions, in order to break into pieces.

2. Inferring the relations between pieces, that is, the structure of the diagnosis.

3. Keeping track of bow the actions taken affect the current problem solving context so that it can be

correctly stored in the piece.

We Bave built a system which observes a expert solve a problem in the domain of automobile diagnosis.
Among other learning techniques, the system creates cases, in pieces, to be stored for use in later problem
solving. The remainder of this paper discusses how it carries out the necessary tasks listed above, in order
to accomplish this objective.

! This research was supported by the Army Research Institute for the Behavioral and Social Sciences under Contract No.
MDA-903-86-C-173. The author wishes to thank Janet Kolodner for her advice and guidance, and Joel Martin for helpful
coruments on eariier versions of the paper.

309

INFERRING INSTRUCTOR’S GOAL

Since case pieces are organized around a goal, before a case can be stored the goals must be known, and
the actions supporting the goals must be associated with them. When a systemn acquires a case from its own
problem solving, it knows what goal it is pursuing at a given time. Acquiring a case from somebody else’s
problem solving, however, is different. Since the instructor’s goal is usually not explicitly stated, it must be
inferred from his actions. Different goals result in different types of actions being done. The student actively
following the example may predict what goal will be pursued next by the instructor. The predicted goal is
the first goal considered as a possibility. If the instructor’s actions are consistent with that goal, then it is
inferred that that is the goal being used. Otherwise, the goal must be inferred bottom up, with ali possible
goals being possible. This means that if the student gets lost in the example, s/he can find actions that make
sense and get back to following along from there, and salvage something from the instructional episode.

In a diagnostic domain some possible goals include generating a hypothesis, testing a hypothesis, inter-
preting a test, fixing a fault, verifying a complaint, and clarifying a complaint. Figure 1 shows a portion of
the instructor’s actions in a given example. The complaint had been that the engine stalls, and the instructor
has just hypothesized that the fast idle speed is set too low. This hypothesis must be tested. The instructor
says that s/he is going to test whether the fast idle speed is low. Then, using his hands, 8/he removes the air
cleaner. S/he disconnects the radiator fan and connects a tachometer, and otherwise prepares for the test.
Then using a specific tool specified in a reference book, 8/he carries out the test, reading the value from the
tachometer and comparing it to the specifications. These actions should all be saved in a piece for the goal
of testing a hypothesis, with the hypothesis being that the fast idle speed is low.

(test (low “fast-idle-speed))

(use (hands))

(do (open “hood))

(do (remove “air-clesaner-casing-top))

(do (remove “air-filter))

(do (remove “air-cleanar-casing-bottom))

(do (set (position “gear-shift neutral)))

(use (socket-mrench))

(do (disconnect “radiator-fan))

(do (connect ~tachometsr “engine))

(do (start "engine-system))

(do (run ~engine-system) until (temperature ~engine-system sarm))
(do (disconnaect “vacuumadvance-hose ~distributor))

(do (plug “vacuum-advance-hosas))

(do (small (open “throttls)))

(use (c-4812-2c))

(do (connect c-4812-2c “choke-camfollower—pin))

(do (release “throttle-lever))

(ask (desired-fast-idle-rpm nil) ~hood-sticker (reply 2400))
(ask ((rpm “engine-system) nil) “tachometer (reply 1600))

13

Figure 1: Instructor’s Actions to be explained

The representation for goals in our system includes a modifiable, and therefore learnable, structure
specifying what types of actions and statements are reasonably expected for fulfilling that goal. Some goals
require particular types of actions. Some action types are inappropriate for some goals. Some action types
can occur multiple times in the pursuit of a particular goal, some can only occur once. Some action types
belong at the beginning of the pursuit of a particular goal, others at the end. To give one example of the
type of inference involved, testing a hypothesis must include an ask type action in order for results to be
obtained.

When the expected goal is not pursued, the other known goals must be considered. If none of the
diagnosis-specific goals are appropriate a more general goal can be considered, which could result in a
diagnosis-specific specialization of the goal being learned. Once the system knows what goal is being pursued,
the student can recover and resume following the instructor.

310

INFERRING PLACE IN CURRENT DIAGNOSIS

We have said that a diagnosis has structure, and that part of acquiring a case from examples is determining
that structure. What is this ‘structure’? The instructor in most cases diagnoses hierarchically. People doing
diagnosis don’t hop around between unrelated hypotheses. The experienced mechanic considers a system as
a potential source of the problem, then narrows the hypothesis down until a replaceable or fixable unit is
determined to be malfunctioning. To a naive observer the hierarchy is not seen, the instructor’s actions are
sequential, a straight line instead of a tree. People can see this hierarchy easily. The rank novice observed
by Lancaster and Kolodner [1987] did not diagnose hierarchically, but the other students, even the one with
Just six months more experience, did. A system requires knowledge in order to see this hierarchy. It cannot
rely on a given pattern of actions from the instructor, but must actually explain or understand what is going
on. Figure 2 demonstrates this with an example diagnosis sequence. The top part of Figure 2 shows the
structure of the instructor’s actions which are shown in the bottom part of Figure 2.

l Case Header - Car Stalls

/

[Hyp - Loose Connected Spark Plug1 ! Hyp - Mnlfunc'tion Carburetor l l Hyp - Malfunction Control System

| Test - Loose Connected Spark Plug1

Hyp - Lean Idle Mixture] I Hyp - Low Idle Speed I [Hyp - High Float Level

¢

Test - Lean Idle Mixture] L Test - Low Idie Speed 1 | Test - High Float Level l

Diagnosis Actions (in order presented)

Hyp - Loose Connected Spark Plug
Test - Loose Connected Spark Plug (Neg.)
Hyp - Malfunction Carburetor

Hyp - Lean Idle Mixture

Hyp - Low Idle Speed

Hyp - High Float Level

Test - Lean Idle Mixture (Neg.)
Test - Low [dle Speed (Neg.)

Hyp - High Float Level

Test - High Float Level (Neg.)

Hyp - Malifunction Control System
Test - Malfunction Control System

Figure 2: Inferred Diagnosis Structure.

Note that a test does not necessarily follow the hypothesis it relates to. Another complication is that
there are at least two different reasons that a hypothesis can directly follow another hypothesis - it is a
refinement as with the ‘lean idle mizture’ hypothesis following ‘maifunction carburetor’, or it is another
possibility at the same level, such as with the low idle speed’ hypothesis directly following the Yean idle
mizture’ hypothesis. Also note that there is no ‘syntactic’ cue that the ‘high float level’ hypothesis is a
refinement of the ‘malfunction carburetor’ hypothesis and that the ‘maifunction control system’ hypothesis
is not. ‘A case representation should store the the case in the structure of the diagnosis, as pictured in the
top part of Figure 2. This more accurately reflects the problem solving that occurred in the episode than
the linear order shown in the bottom part of Figure 2. This will make the case easier to use in the future.

Knowledge is necessary to understand the hierarchy being used. Causal knowledge and structural rela-
tionships from the model are both useful for this process. A hypothesis can go under a previous hypothesis
in the hierarchy if it causes the previous hypothesis, if the component involved is part of the previous com-
ponent, or if the predicate is more refined. We have established a set of heuristics for inferring the relations

311

between case pieces. The default is that the piece follows from the piece that immediately preceeded it, but
this is far from always the case, the other heuristics deal with when that isn't appropriate.

By separating cases into pieces, we have made the system more flexible than it would be with monolithic
cases. When the reasoner is trying to acheive a goal it can directly access a piece that previously pursued that
goal. When solutions to goals are independent, this makes it easier to find the best solution for each goal.
It also means that generalizations involving a particular goal can be more easily created, since information
not related to the goal is not confounded with relevant information in the knowledge structure.

At the same time, the cases are reconstructable because the structure of the case is preserved in the links
between the case pieces. Therefore, when goals are tightly interconnected, a previous case can be followed as
long as it is relevant, by following the links as long as the findings are the same. The diagnostician following
such a hierarchically organized case will diagnose hierarchically rather than haphazardly like a novice.

UPDATING THE CURRENT CONTEXT

In order for the stored case pieces to be retrieved when most appropriate, the context when it was
appropriate in the expert’s judgement should be associated with the piece. The problem solving context
includes the initial problem description, any modifications to the problem description, and any relevant
actions taken during the current problem solving. That is, in the terms used by Barletta and Mark [1988],
it includes the external context and the internal context. Since part of the context changes during problem
solving, we have chosen to store the current problem solving context in the piece. In acquiring a case from
a solved example, this means that the ‘student’ must take an active role. The observer must infer how the
instructor’s actions change the current problem solving context. This is necessary so that the case pieces
created will be able to contain the correct problem solving context. Then the piece will be able to be retrieved
at the appropriate time in the future, and the correct generalizations will be able to be made. The context
must be updated to include hypotheses made and hypotheses ruled out, tests done and their results, and
fixes done, plus any changes in the problem description. Most of the information needed can come directly
from the observed actions, it just has to be linked to the right slot in the context. However, a student that
Just passively watches without processing will not get the benefit that the student that does this processing
will get.

CONCLUSION

Case-based reasoners in general have used cases that they acquired through their own problem solving
and/or cases that were entered by the programmer. An alternative is to acquire cases from solved example
problems, such as real students are shown as part of the normal education process. We have described the
necessary processing and inferences for acquiring cases from examples in a diagnostic domain. A system has
been constructed which uses this and other learning techniques in order to improve its diagnostic abilities.
The principles behind the process should transfer to a different type of domain, such as design, but the set
of heuristics will probably have to be revised.'

References
Barletta, R. & Mark, W. (1988). Breaking cases into pieces. In Proceedings of Case-Based Reasoning Workshop.

Kolodner, J. (1988). Retrieving events from a case memory: a parallel implementation. In Proceedings of a Workshop on
Casec-Based Reasoning. :

Lancaster, J. & Kolodner, J. (1987). Problem solving in a natural task as a function of experience. In Proccedings of the Ninth
Annxal Conference of the Cognitive Science Society.

Redmond, M. & Martin, J. (1988). Learning by understanding explanations. In Proceedings of the 26tA Annual Conference of
the Soxtheast Region ACM.

312

accepted to 1989 Cognitive Science Conference.

Combining Explanation Types for Learning by

Understanding Instructional Examples !

Michael Redmond
School of Information and Computer Science
Georgia Institute of Technology
Atlanta, Georgia 30332-0280
E-mail: redmond@pravda.gatech.edu

Abstract

Learning from instruction is a powerful technique for improving problem solving. It is most
effective when there is cooperation between the instructor and the student. In one cooperative
scenario, the instructor presents examples and partial explanations of them, based on the
perceived needs of the student. An active student will predict the instructor’s actions and then
try to explain the differences from the predictions. This focuses the learning, making it more
efficient. We expand the concept of explanation beyond the provably correct explanations of
explanation-based learning to include other methods of explanation used by human students.
The explanations can use deductions from causal domain knowledge, plausible inferences from
the instructor’s actions, previous cases of problem solving, and induction. They involve the
goal being pursued and the action taken in support of the goal. The explanations result
in improved diagnosis and improved future explanation. This combination of explanation
techniques leads to more opportunities to learn. We present examples of these ideas from the
system we have implemented in the domain of automobile diagnosis.

1 Introduction

People learn much of what they know from instruction. Presentation of examples can be an
important part of instruction. LeFevre and Dixon [1986] found that students prefer examples
to written text in learning a procedural task. Reder, Charney and Morgan [1986] found that
instruction that included examples was more effective. What is it that makes examples effective
teaching instruments?

One characteristic that makes them effective is that active students that try to explain the
examples learn through the process of explanation. Lancaster and Kolodner [1988] and Chi,
Bassok, Lewis, Reimann, and Glaser [in press] have both observed this in protocol studies. This
has been our focus - learning from understanding how a teacher solves an example problem.

Figure 1 summarizes the general process. Essentially, the instructor presents the problem,
and appropriate actions or solutions. The student uses various types of knowledge to predict the
instructor’s actions, and then to understand or explain why the instructor’s action or solution is
appropriate.

The instructor states the prohlem description.

The student attempts to generate an appropriate action for the problem and current context.
The instructor generates a correct action or solution for the problem and current context.
The student then attempts to explain this action, learning if possible.

Continue with step 2 if the problem is not solved.

O b QO DD =

. Figure 1: General LBUE Algorithm.

The student is testing his ability to diagnose when s/he predicts what the instructor will
do. The same techniques s/he would use if s/he were actually diagnosing are used to set up the
prediction. In this way, when an opportunity to learn occurs, what is learned will be useful when
the student actually goes about diagnosing. The example helps focus the learning.

IThis research was supported by the Army Research Institute for the Behavioral and Social Sciences under
Contract No. MDA-903-86-C-173. The author wishes to thank Janet Kolodner for her advice and guidance, and
Joel Martin, Louise Penberthy, and Chris Hale for helpful comments on earlier versions of the paper.

We have constructed a system that creates explanations using deductions from causal domain
knowledge, plausible inferences from the instructor’s actions, previous cases of problem solving,
and induction. The explanations involve the goal being pursued and the action taken in support
of the goal. The explanations result in improved diagnosis and improved future explanation. This
combination of explanation techniques leads to more opportunities to learn. This paper discusses
the different types of explanations. and how they improve future problem solving and explanation.

2 Explanation

In our approach, explanation follows prediction and observation. The first step, therefore, is to
compare the prediction with the expert’s problem solving for:

e Whether the instructor appears to be pursuing the predicted goal

o Whether pursuit of the goal leads to the predicted action (e.g. the same hypothesis, or the
same test of a hypothesis)

e Whether the implementation detail is the same as was predicted (e.g. the same way of
carrying out a test or fix)

For each of these, a correct prediction is essentially a successful explanation. Further explanation
is required where the prediction isn’t met. There can be many different ways of explaining
differences. In this paper we discuss explanations involving:

e Inferring the instructor’s current goal, and when necessary learning a new goal.
e Inferring the place of the current goal and actions in the diagnosis episode.

o Adjusting the saliency of features for future case retrieval.

e Trying to causally explain actions.

We have also begun to deal with a few other types of explanation that we will not discuss here. For
example, explaining differences in implementation detail may rely on differences in car models,
available tools, or in the current state of the car.

The types of explanations we make use of overlap with the types of explanations observed by
Chi et al [in press]. They observed explanations that:

1. Refine or expand the conditions of an action

2. Explicate or infer different consequences of an action
3. Determine a goal or purpose for an action

4. Give meaning to a set of quantitative expressions.

Their first type of explanation is not a type that we have explored as yet. Our causal chaining
explanation type corresponds to their second type, and our inferring the instructor’s goal expla-
nation type corresponds to their third type. Their fourth type is not applicable to our domain,
though really it is a more specific version of inferring a goal. At a different level, Chi et al [in press]
note explanations relating example actions to domain principles and to other example actions.
Causal chaining can be seen as relating the observed actions to the domain principles. Inferring
the place of the current goal and actions in the current diagnosis episode is one part of relating
actions to each other.

In the following sections we will discuss in more detail how explanation of instruction is done,
and how it improves the system through what is learned.

3 Inferring Instructor’s Goal

Slnce the instructor’s goa.l is usually not explicitly stated, it must be inferred from his actions.
Different goals result in different types of actions being done The first part of the explanation
process is to compare the predicted goal to the instructor’s goal, so the instructor’s goal must be
inferred. The process is focused by the student’s prediction of the instructor’s goal. The predicted
goal is the first goal considered as a possibility. If the instructor’s actions are consistent with that
goal then it is inferred that that is the goal being used. Otherwise, the goal must be inferred
bottom up, with all possible goals being possible. This means that 1f the student gets lost in the
example, s/he can find actions that make sense and get back to following along from there, and
salvage something from the instructional episode.

In a diagnostic domain some possible goals include generating a hypothesis, testing a hypoth-
esis, interpreting a test, fixing a fault, verifying a complaint, and clarifying a complaint. Figure 2
shows a portion of the instructor’s actions in a given example. The complaint had been that the
engine stalls, and the instructor has just hypothesized that the fast idle speed is set too low. This
hypothesis must be tested. The instructor says that s/he is going to test whether the fast idle
speed is low. Then, using his hands, s/he removes the air cleaner. S/he disconnects the radiator
fan and connects a tachometer, and otherwise prepares for the test. Then using a specific tool
specified in a reference book, s/he carries out the test, reading the value from the tachometer and
comparing it to the specifications.

(test (low “fast-idle-speed))

(use (hands))

(do (open “hood))

(do (remove “air-cleaner-casing-top))

(do (remove ~air-filter))

(do (remove ~air-cleaner-casing-bottom))

(do (set (position “gear—shift neutral)))

(use (socket-wrench))

(do (disconnect “radiator-fan))

(do (connect “tachometer ~engine))

(do (start “engine-system))

(do (run “engine-system) until (temperature "engine-system warm))
(do (disconnect ~vacuum-advance-hose “distributor))

(do (plug ~vacuum-advance-hose))

(do (small (open “throttle)))

(use (c-4812-2c))

(do (connect c-4812-2¢ “choke-cae—follower-pin))

(do (release “throttle-lever))

(ask (desired-fast-idle-rpm nil) “hood-sticker (reply 2400))
(ask ((rpm “engine-system) nil) ~tachometer (reply 1600))

Figure 2: Instructor’s Actions. The instructor's actions, entered into the system either interactively or by batch
in a variable, are predicate forms specifying the type of action, and the action.

The representation for goals in our system includes a modifiable, and therefore learnable,
structure specifying what types of actions and statements are reasonably expected for fulfilling
that goal. Some goals require particular types of actions. Some action types are inappropriate for
some goals. Some action types can occur multiple times in the pursuit of a particular goal, some
can only occur once. Some action types belong at the beginning of the pursuit of a particular
goal, others at the end. To give one example of the type of deductive inference involved, testing
a hypothesis must include an ask type action in order for results to be obtained. When the
expected goal is not pursued, the other known goals must be considered. If none of the diagnosis-
specific goals are appropriate a more general goal can be considered, which could result in a
diagnosis-specific specialization of the goal being learned. Once the system knows what goal is
being pursued, then the same explaining is done as if the goal had been correctly predicted. The
student can recover and resume following the instructor.

Figure 3 shows an annotated run of our system CELIA (Cases and Explanations in Learning:
an Integrated Approach), reasoning as a student would, realizing that it needs to learn a new
goal. For this run of the program we removed knowledge of the goal G-TEST-HYPOTHESIS
from the student. This is equivalent to the novice student observed by Lancaster and Kolodner
[1987], who came up with a reasonable hypothesis, then proceeded directly to trying to fix it
without testing to see if it was a correct hypothesis. The example picks up after the instructor
has made the hypothesis that the idle speed is low. The student retrieves a case piece suggesting
the repair to do as a prediction of the instructor’s actions. The instructor, however, correctly tests
the hypothesis. These actions do not match expected action types for carrying out a repair, and
in fact are not consistent with action types expected for any of the student’s known diagnostic
goals. It does, however, on further inspection, fit with expectations for a more general, cross-
domain goal, of testing a decision. This enables learning a new diagnostic goal which will be a
specialization of the more general goal.

There seems to be a difference between the goals that Chi et al [in press| talk about being
inferred and the goals that our system infers. Specifically, if one looks at a goal as a goal type plus

a parameter, our main effort is in inferring the goal type. The goal type would be our goal, for
example, G-REPLACE-FIX, and the parameter would be the specific instantiation, for example
(INCREASE (POSITION IDLE-SPEED-SCREW)). The parameter comes pretty easily for our
system due to the input representation. Chi et al [in press] observed students trying to infer fully
instantiated goals where the parameter could be less than obvious. However, the key point is that
the student must understand what goal is being pursued in each part of the example as part of
explaining the example. Future work can be directed towards inferring the parameter from less
well-tailored input.

‘P‘f‘ext Task
G-PREDICT-EXPERTS-ACTION

Next predicted goal

G-REPLACE-FIX

Mentally Simulating strategy S-RETRIEVE-MEMORY-PIECE for goal G-REPLACE-FIX
retrieve a piece from memory now

Matches fragments (pieces) -

(GEN-REPLACE-FIX-LOW-IDLE 7.6000004)
(GEN-REPLACE-FIX-THERM-COIL-CHOKE 5.8)
(GEN-REPLACE-FIX-LEAN-CHOKE 5.8)
(GEN-REPLACE-FIX-TOO-RICH 1.3)

Simulating based on reirieved piece GEN-REPLACE-FIX-LOW-IDLE

The fault has been determined to be: (LOW IDLE-SPEED)

The fix usually done in previous similar experiences was: (INCREASE (POSITION IDLE-SPEED-SCREW))
The method of doing the fix in previous similar experiences was: ...

Next Task
G-OBSERVE-EXPERTS-ACTION

Expert’s next action xewma® NOTE - test if engine is cold when it stalls **%%*=

(TEST (TEMPERATURE ENGINE.SYSTEM (WHEN (STALLS ENGINE-SYSTEM)) COLD))

Expert’s next action

(DO (DRIVE CAR) UNTIL (STALLS ENGINE-SYSTEM))

Expert’s next action : ****** NOTE - read engine temperature guage when car stalls *»====
o engine is cold when it stalls ———

(ASK ((TEMPERATURE ENGINE-SYSTEM) NIL) ENGINE-TEMP-GAUGE (REPLY (COLD)))

Next Task
G-EXPLAIN-DIFFERENCE

Comparing instructors actions to predicted actions
maemassmsaes He's using a different goal than expected *==oneusxn

mmmmsumune® don’t know the goal being used or know it incorrectly *osss=asans

He's probably pursuing a specialization of the goal: G-TEST-DECISION
R E LS 2 22 1] Cle&‘e ‘ha‘ ’peci“iza‘ion 0000 2003020

NEW GOAL: G-DIAG-TEST-DECISION
**** Add new goal to tables **=*

modify goal-action table

modify feature-saliency table

modify goal hierarchy

modify goal-slot table

modify slot-action table

modify slot-context table

reacting to observing learned goal G-DIAG-TEST-DECISION
making new case piece ... CASE-DIAG-TEST-DECISION-1

Figure 3: Realizing the need to Learn a Goal.

4 Inferring Place in Current Diagnosis

Inferring the place of the current goal and actions in the diagnosis episode is another step toward
understanding observed problem solving. It is not only important in understanding what the
instructor is doing, it is also necessary for saving the episode in a useful form as a case for case-
based reasoning (CBR) [Kolodner and Simpson 1984]. A case will be more useful in the future if
it reflects the problem solving done in the episode.

‘Lhe instructor in most cases diagnoses hierarchically. People doing diagnosis don’t hop around
between unrelated hypotheses. The experienced mechanic considers a system as a potential source
of the problem, then narrows the hypothesis down until a replaceable or fixable unit is determined
to be malfunctioning. To a naive observer the hierarchy is not seen, the instructor’s actions are
sequential, a straight line instead of a tree. The rank novice observed by Lancaster and Kolodner
[1987] did not diagnose hierarchically, but the other students, even the one with just six months
more experience, did. The ability to diagnose hierarchically requires knowledge of the hierarchy
involved. A system cannot rely on a given pattern of actions from the instructor, but must
actually explain or understand what is going on. Figure 4 demonstrates this with an example

diagnosis sequence. The top part of Figure 4 shows the structure of the instructor’s actions which
are shown in the bottom part of Figure 4.

{ Case Header - Car runs rough

\
IHyp - Not Connected Spark Plug l Hyp - Malfunction Fuel System Hyp Malfunction Distributor l
rd
Test - Not Connected Spark Plug l/ / \Fnt Malfunction Distributor]
[Hyp - Leak Fuel System] l Hyp - Clogged Fuel Lines Hyp - Clogged Fuel Filter]
2
I Test - Leak Fuel System l l Test - Clogged Fuel Lines] l Test - Clogged Fuel Filter l

Diagnosis Actions (in order presented)

Hyp - Not Connected Spark Plug
Test - Not Connected Spark Plug (Neg.)
Hyp - Malfunction Fuel System
Hyp - Leak Fuel System

Hyp - Clogged Fuel Lines

Hyp - Clogged Fuel Filter

Test - Leak Fuel System (Neg.)
Test - Clogged Fuel Lines (Neg.)
Hyp - Clogged Fuel Filter

Test - Clogged Fuel Filter (Neg.)
Hyp - Malfunction Distributor
Test - Malfunction Distributor

Figure 4: Inferred Diagnosis Structure.

Note that a test does not necessarily follow the hypothesis it relates to. Another complication
is that there are at least two different reasons that a hypothesis can directly follow another
hypothesis - it is a refinement as with the ‘fuel system leak’ hypothesis following ‘malfunction fuel
system’, or it is another possibility at the same level, such as with the ‘clogged fuel lines’ hypothesis
directly following the ‘leak fuel system’ hypothesis. Also note that there is no ‘syntactic’ cue that
the ‘clogged fuel filter’ hypothesis is a refinement of the ‘malfunction fuel system’ hypothesis and
that the ‘malfunction distributor’ hypothesis is not.

Knowledge is necessary to understand the hierarchy being used. Causal knowledge and struc-
tural relationships from the model are both useful for this process. A hypothesis can go under
a previous hypothesis in the hierarchy if it causes the previous hypothesis, if the component
involved is part of the previous component, or if the predicate is more refined.

Chi et al [in press| noted that one type of explanation is relating an action to another action.
This process is one way of doing that. It is basically a linking of an action to the action that it
follows from, which may not be the most recent previous action. The heuristics we use are geared
for diagnosis. They were drawn from task analysis of Lancaster and Kolodner’s [1987] protocols.
They are the set that were necessary to establish the relationships between actions that we saw in
the instructor’s examples. We don’t have any indication whether human students use heuristics
such as these to recognize the relationships. Further analysis is required in order to come up with
heuristics that would prove useful across domain types, such as for design or planning.

A partial list of heuristics used by our system to explain the instructor’s actions in terms of
hierarchical diagnosis is shown in Figure 5. The default expectation is that a hypothesis or test
will be related to what immediately preceeded it. However, as has been noted, this isn’t always
the case, and the third, fourth, and fifth heuristics are controls on that. The new action must
actually be related to the previous one, by being more specific or causally related. For example,
in Figure 4, the hypothesis ‘leak fuel system’is more specific than the hypothesis ‘malfunction
fuel system’ because the predicate is more specific and the involved component is the same.
The hypothesis ‘clogged fuel lines’ is more specific than the hypothesis ‘malfunction fuel system’
because fuel lines is below fuel system in the partonomy in memory. However the hypothesis
‘malfunction distributor’ did not qualify on either count so it had to go in a different place. The
third way to satisfy heuristic 3 is for the later hypothesis to be causally related to the previous

hypothesis. The necessity of this is shown by an example. If the hypothesis ‘clogged spark plug
gap’ follows the hypothesis ‘no spark from spark plug’ it would not be placed beneath it because
‘clogged’ is a different predicate than ‘no spark’, and isn’t more refined. This could easily be
a different problem. However, causal knowledge allows linking the one to the other so that the
system knows, as a person would, that ‘clogged spark plug gap’is a refinement of the hypothesis
‘no spark from spark plug’.

1. Try to put new hypothesis under most recent previous hypothesis or test.
2. Try to put new test under most recent previous hypothesis.
3. New hypothesis can go under a previous hypothesis if

e its component is below the previous hypothesis's component in partonomy,
o if the component is the same and the new predicate is more specific,
¢ if the new hypothesis could cause the previous hypothesized fault
4. New hypothesis can go under a previous test if
e the test showed results indicating abnormal function and
o the hypothesis is more refined than the test result (component is below the test's component in partonomy or if the
component is the same and the predicate is more specific, or if the hypothesis could cause the test result)
5. New test can go under a previous hypothesis if
e the tested component is the same or below the hypothesis’s component in partonomy and the test predicate is the same
or more refined than the predicate in the hypothesis,

e no component in the test is higher than any component in the hypothesis in partonomy
o or if the tested clause could be a result of the hypothesis”)

6. Don’t add anything directly under a hypothesis that has aiready been tested
Don’t add anything under a test whose results indicated normal function, this should be followed by backtracking
8. Don't add a new test directly under a hypothesis that already has subhypotheses

N

Figure 5: Heuristics for inferring the structure of a diagnosis.

If the action cannot go after the most recent action then the system must search for its proper
place. Many of the other heuristics are limitations on this process, either avoiding potential
incorrect placements, or cutting off search that will prove to be unfruitful.

For example, Heuristic 7 allows cutting off search when the instructor would be backtracking.
If in Figure 4 the malfunction fuel system hypothesis had been followed by a test that showed
normal function for the fuel system, then future hypotheses from the instructor should involve
other hypotheses that aren’t refinements of a fuel system malfunction, and the system can avoid
wasted effort by not trying to see if they fit under that hypothesis.

Once the structure of the observed diagnosis has been determined, the case can be stored in
memory for use in future problem solving and explanation. The case is stored in pieces so that
the particular pieces can be accessed as necessary, and so the representation is flexible enough
to handle diagnosis that doesn’t have a set pattern of hypotheses and tests. There are pieces for
each instance of each goal pursued in the episode. That is, for each hypothesis made, for each
test of a hypothesis, for each interpretation of a test, for each fix attempted, there will be a piece.
These pieces are linked together to preserve the structure of the case, as inferred in this step. This
allows a future diagnosis using the current case to follow the links as long as the findings are the
same. The diagnostician following such a hierarchically organized case will diagnose hierarchically
rather than haphazardly like a novice. The case pieces, once correctly linked, are stored beneath
general knowledge in the model for the car, under related components.

5 Adjusting the Salience of Features

Another important explanation type is adjusting the saliency of features for future case retrieval.
It may not seem like adjusting the saliency of features is really explanation. However, when two or
more hypotheses are both correct hypotheses, in that they can both cause the observed symptom,
causal EBL-like explanations do not provide a way of distinguishing between them. The instructor
chooses one of the hypotheses to pursue first. The student predicts a particular hypothesis will
be pursued first. If the student’s prediction is made based on case based reasoning, then the
hypothesis predicted first depends on the matching function. Retrieval of previous cases involves
searching for a case or generalization piece which served the goal currently being pursued. The
retrieved case piece is selected from the candidate pieces based on a comparison of the feature
values of the current problem solving context with the feature values of the problem solving

context at the time of the previous case pieces. So adjusting the matching function by adjusting
the importance of features in the problem solving context will lead to the prediction being correct
in the future. This is an implicit way of explaining the choice between the hypotheses without
having reason to say that one is more likely than the other. The intuition is that such weighting of
competitive hypotheses in diagnosis is generally inductive, the mechanic doesn’t know for a fact
that x fails more often than y, statistics aren’t readily available or used, nor can such preference be
explained deductively. The weighting is inductive from experience, and from instruction. There is
no evidence of this type of explanation in Lancaster and Kolodner’s and Chi et al’s observations.
However, it isn’t the sort of thing that would be amenable to study through protocols.

The method of adjusting the saliency of features is fairly simple. It is based on the idea of
making features that match when the problem solver is successful more important, and features
that match when the problem solver is unsuccessful less important. Since the salience of various
features varies depending on the goal being pursued by the problem solver, separate measures
of feature importance are maintained for different goals. When the student predicts the same
action the instructor makes, the student has been successful. The features of the current problem
solving context that matched the features in the previous case are made slightly more important.
When the student predicts a different action than the instructor, presumably the student has
been unsuccessful. The blame assignment is best made by retrieving another case piece in which
the instructor’s action was the one done. Figure 6 shows how the blame assignment is done on
an example incorrect prediction of a hypothesis. Those features of the current context that more
closely match the context of the newly retrieved case piece than the context of the originally
retrieved case piece will be made more important. Those features of the current context that
more closely match the context of the originally retrieved case piece than the context of the
‘correct’ piece are made less important. Thus instuction with examples helps deal with the feature
saliency problem, by giving feedback on the correctness of case retrieval, allowing comparison of
the matching features.

Goal - G-GENERATE-HYPOTHESIS

Piece retrieved - (CASE-HYP-CHOKE-THERH 14.280001)

Hypothesis - (MALFUNCTION CHOKE-THERKOSTAT)

Expert’s next action - (HYP (LOW IDLE-SPEED))

Piece with hypothesis = (LOW IDLE-SPEED) - (GEE-HYP-ENGIEE-STALLS 11.6)

Feature Student’s piece Piece matching Instructor Feature Importance
CAR-TYPE Partial match No Match less important
CAR-OWEER Hatch Ho Natch less important
COMPLAIET Match Hatch no change
FREQUEECY Partial match Ho Hatch less important
HOYW-LONG Match Partial match less important
OTHER-SYAPT Match Katch no change
RULED-IX Partial match Match more important
RULED-0UT Partial match Hatch more important
TESTS-DONE-N-RESULTS Partial match Ratch more important
FIXES-DOBE Partial match Match more important
CURREET-HYPOTH Katch (none) . Match (none) no change
FAULT-DETERMINATION Ratch (none) Match (nonse) no change
PARTICIPANTS Partial match ¥o Ratch less important
LOCATIOE Ratch Match no change
WHEE Partial match Ro Ratch less important

s Figure 6: Example Blame Assignment.
This will lead to the correct piece being retrieved in the same situation in the future. A
combination of instruction, case retrieval, and induction has been used to improve the performance

of the CBR part of diagnosis.

6 Causal Explanation of Actions

Causal explanations of actions enable filling gaps in the causal domain knowledge through the
basic LBUE methods described in Redmond and Martin [1988]. These were an extension of

explanation-based learning (EBL) [DeJong 1983; DeJong and Mooney 1986; Mitchell, Kellar,
and Kedar-Cabelli 1986}, to allow learning without a complete and consistent domain model. An
example will illustrate the ideas. An instructor may present the student with a malfunctioning car
in which the engine cranks but does not start. S/he may suggest a hypothesis that the distributor
cap is cracked. A complete causal explanation would be:

(cracked distributor-cap) causes
(contains distributor-cap moisture) causes
(low (input spark-plug electricity)) causes
(not (ignite spark-plug)) causes
(not (combustion cylinder)) causes

(not (start engine))

If the student can complete the explanation, s/he can learn that a cracked distributor cap
causes the symptom of the engine cranking but not starting. If the student was missing some
knowledge, it is possible that the knowledge could be inferred as plausible. For example, if the
student was missing the fact that moisture in the distributor cap can cause less electricity to
reach the spark plug, s/he may still be able to infer that fact based on the partial explanation
having been given by the trusted expert, in conjunction with the partial explanation formed by
the student and general knowledge possessed by the student about water’s effect on electricity.

In addition to enabling filling gaps in the causal domain knowledge, trying to causally explain
actions can make causal explanations available as indices to the new case containing the action.
Hammond and Hurwitz [1988|, and Barletta and Mark [1988] both use this approach, which
hasn’t yet been implemented in the current system.

7 Conclusion

Explanation of solved example problems is an effective way of learning. A system has been
constructed that uses EBL-like deduction, induction, and retrieval of previous cases in creating
explanations, improving future diagnoses and future explanations of observed problem solving.
The use of multiple types of explanation of examples follows the lead of the studies by Lancaster
and Kolodner [1987, 1988] and Chi et al [in press]. Their observations suggest further types of
explanation that could be exploited in making our system a better student. The exploitation of
instruction turns out to be a powerful way of learning, and integrates several learning techniques.

REFERENCES

Barletta, R. & Mark, W. (1988). Explanation-based indexing of cases. In Proceedings of ¢ Workshop on Case-Based Reasoning.

Chi, M., Bassok, M., Lewis, M., Reimann, P., & Glaser, R. (in press). Self-explanations: how students study and use examples to solve
problems. Cognitive Science, in press.

DeJong, G. & Mooney, R. (1986). Explanation based learning: an alternative view. Machine Learning, 1, 145-176.

DeJong, G. (1983). Acquiring schemata through understanding and generalized plans. In Proceedings of the Eighth International Joint
Conference on Artificial Intelligence.

Hammond, K. J. & Hurwitz, N. (1988). Extracting diagnostic features from explanations. In Proceedings of a Workshop on Case-Based
Reasoning.

Kolodner, J. & Simpson., R. Jr. (1984). Experience and problem solving: a framework. In Proceedings of the Sizth Annual Conference of the
Cognitive Science Society.

»

Lancaster, J. & Kolodner, J. (1987). Problem solving in a natural task as a function of experience. In Proceedings of the Ninth Annual
Conference of the Cognsitee Science Socieiy.

Lancaster, J. & Kolodner, J. (1988). Varieties of learning from problem solving experience. In Proceedings of the Tenth Annual Conference
of the Cognitive Science Society.

LeFevre, J. & Dixon, P. (1986). Do written instructions need examples?. Cognition and Instruction, 8, 1-30.

Martin, J. & Redmond, M. (1988). The use of explanations for completing and correcting causal models. In Proceedings of the Tenth Annual
Conference of the Cognitive Science Society.

Mitchell, T. M., Keller, R. M., & Kedar-Cabelli, S. T. (1986). Explanation based learning: an unifying view. Machine Learning, 1, 47-80.

Reder, L., Charney, D., & Morgan, K. (1986). The role of elaborations in learning a skill from an instructional text. Memory and Cognition,
14, 64-78.

Redmond, M. & Martin, J. (1988). Learning by understanding explanations. In Proceedings of the 26th Annual Conference of the Southeast
Region ACM.

Distributed Cases for Case-Based Reasoning; Facilitating
Use of Multiple Cases

Michael Redmond*
School of Information and Computer Science
Georgia Institute of Technology

Atlanta, Georgia

30332-0280

(404) 853-9382
E-mail: redmond@pravda.gatech.edu

Abstract

A case-based reasoner can frequently benefit from us-
ing pieces of multiple previous cases in the course of
solving a single problem. In our model, case pieces,
called snippets, are organized around the pursuit of a
goal, and there are links between the pieces that pre-
serve the structure of reasoning. The advantages of
our representational approach include: 1) The steps
taken in a previous case can be followed as long as
they are relevant, since the connections between steps
are preserved. 2) There is easy access to all parts of
previous cases, so they can be directly accessed when
appropriate.

Introduction

Case-based Reasoning (CBR) (Kolodner and Simpson
1984) is a method of using previous episodes to sug-
gest solutions to new problems. CBR allows a rea-
soner to solve problems efficiently when previous sim-
, ilar experiences are available. Problem solving using
case-based reasoning usually involves retrieving rele-
vant previous cases, adapting the solution(s) from the
previous case(s), if necessary, to solve the new prob-
lem, and storing the current episode as a new case to
be used in the future.

A case-based reasoner can frequently benefit from
using pieces of multiple previous cases in the course
of solving a single problem. For example, in protocols
taken by Lancaster (Lancaster and Kolodner 1988),
mechanics doing a troubleshooting task used pieces of
different cases to suggest different hypotheses to con-
sider and tests to perform.

An annotated example from our program CELIA
(Cases and Explanations in Learning; an Integrated
Approach) (Redmond 1989b), which solves problems
in the domain of automobile troubleshooting, illus-

*This research has been supported by the Army Re-
search Institute for the Behavioral and Social Sciences un-
der Contract No. MDA-903-86-C-173, and by DARPA
contract F49620-88-C-0058 monitored by AFOSR. The au-
thor wishes to thank Janet Kolodner for her guidance, Ray
Bareiss, and Ashwin Ram for helpful discussions, and Tom
Hinrichs, Steve Robinson, Louise Penberthy, and Joel Mar-
tin for helpful comments on earlier versions of the paper.

trates the successful use of multiple cases. In this ex-
ample, the car is stalling. In forming an initial hypoth-
esis, the reasoner retrieves part of a previous case with
the same symptoms that suggests that the idle speed is
low and that the mechanic should test whether the en-
gine stalls when it is cold. After carrying out the test
the mechanic finds that the engine stalls when warm.
Since the results of this test are different than in the
previous case, the rest of that case is not useful for
further diagnosis.

###4% Relevant Case Snippet Retrieved ****
The HYPOTHESIS that Case 101, Snippet Case-Generate-
Hypothesis-316 suggests is:
(LOW IDLE-SPEED)
%#% Continue with Linked Case Snippet **
The TEST that Case 101, Snippet Case-Test-Hypothesis-318
suggests is: (TEMPERATURE ENGINE-SYSTEM
(WHEN (STALLS ENGINE-SYSTEM)) COLD)
The TEST-RESULT predicted is:
(TEMPERATURE ENGINE-SYSTEM (COLD))
Result: (TEMPERATURE ENGINE-SYSTEM (WARM))
#3% Abandoning Case 101 ***

CELIA recognizes that the first case must be aban-
doned, and retrieves another case to help it interpret
the test result. The new case shares hypotheses and
test results with the current situation, rather than just
symptoms. It suggests that the problem is a low idle
mixture.

“#%#% Continuing with Case 106, Snippet Case-Interpret-Test-506
The RULE-IN that Case 105, Snippet Case-Interpret-Test-505
suggests is: (LOW IDLE-MIXTURE)
The RULE-OUT that Case 105, Snippet Case-Interpret-Test-505
suggests is: (LOW IDLE-SPEED)

*** Continuing with Case 102, Snip. Case-Generate-Hypothesis-289
The hypothesis that Case 103, Snippet Case-Generate-
Hypothesis-289 suggests is:
(SMALL (DISTANCE THROTTLE-DASHPOT-STEM
THROTTLE-LEVER))
The TEST that Case 102, Snippet Case-Test-Hypothesis-287
suggests is: (DISTANCE THROTTLE-DASHPOT-STEM
THROTTLE-LEVER)
The TEST-RESULT predicted ia:
(NOT (SMALL (DISTANCR THROTTLE-DASHPOT-STEM
THROTTLE-LEVER)))

It further suggests actions to take to fix the problem
(not shown), but after carrying out those actions, the
car still stalls. This case, too, is abandoned. Another

case is retrieved that suggests a new hypothesis: the
throttle dashpot is out of place. It suggests checking
if the distance between the throttle dashpot and the
throttle lever is too short. This hypothesis proves to
be correct, the fix it suggests is carried out and the
problem is fixed.

The process we are describing is one of using pieces
of several cases to solve a problem. We have ob-
served this happening in automobile troubleshooting
(Lancaster and Kolodner 1988), medical diagnosis, and
meal planning (Hinrichs 1988). We suspect that it is
common to any problem solving task that is solved
by addressing subgoals individually. It is especially
evident when planning and execution are interleaved,
where the results of execution are not always as pre-
dicted. In order for several cases to be used efficiently
in combination with each other, several issues must be
addressed. -

o How to retrieve a case when some part of it could

prove useful.

e How to find and isolate the parts of the previous
case that will be useful in the current context.

o How to form generalizations to reflect commonalities
in parts of the problem solving experiences.

In this paper we-discuss a case representation that
enables effective combination of multiple cases by mak-
ing each part of a case directly accessible, while retain-
ing the links between the parts.

Case Representation

When more than one case is used to solve a problem,
frequently only parts of each case will be useful in the
synthesis. These parts might be buried within an ex-
tended sequence of actions serving many goals. For
example, when a reasoner is trying to find a test for a
particular hypothesis, the relevant test part of a case
is all he needs to focus on. The actions taken and
the other hypotheses are not important at that time.
Cases must therefore be represented such that their
parts can be efficiently accessed.

Traditionally, cases used by case-based reasoners
have been treated as monolithic entities !. That is,
an episode is stored as a single instantiation of a single
knowledge structure. Aspects of a case are specified
as slots in the representation. Although many of these
representations have structured representation within
slots and reasoning can be applied to parts of a case,
indexing, in general, retrieves the cage as a whole.

Treating a situation as a monolithic case and embed-
ding everything in it creates problems for using parts
of muitiple cases to solve one problem:
¢ Retrieval of the parts of the case that can be help-

fulvin a given situation has to be a two step pro-

cess. First, the appropriate case must be accessed,
then the currently useful parts hidden inside the case
must be found. It can take a lot of effort. to find them
within the case, even given the right indices to the

1See Related Work section for some exceptions.

situation. A one step process allowing direct access
to the useful parts of cases would be more efficient.

¢ Monolithic cases contain too much information for a
system to be able to do useful generalization. Since
cases have many parts, some of which should be
generalized with parts of other cases, but others of
which are unique, generalization of commonalities
may be delayed.

In order for the appropriate part of a case to be ac-
cessed when it can be useful, in the middle of problem
solving, it is advantageous to divide cases into pieces.
In our model,

o Cases are stored in pieces, or snippets (Kolodner
1988). This allows the reasoner to use small frag-
ments of cases in its reasoning rather than having to
wade through large monolithic cases.

¢ Each snippet is organized around one particular
goal, and contains information pertaining to the pur-
suit of that goal.

o Each snippet contains the current problem solving
context at the time the goal was initiated, including
the initial problem description and results of actions
taken so far.

e There are links between the snippets that preserve
the structure of the diagnosis. Each snippet is linked
to the snippet for the goal that suggested it and to
the snippets for the goals it suggests.

Content of Snippets

Each snippet can be thought of as a scene of the larger
episode. A snippet has three main types of informa-
tion. First, is the problem solving context at the time
of the snippet’s occurrence. Second is information re-
lated to the goal that the snippet is centered around.
Last is information linking the snippet to other re-
lated snippets. Figures 1, 2, and 3 together comprise
an example of the internal representation of a snippet
representing the goal of testing the hypothesis that the
carburetor float bowl had too high a fuel level.
Context. Problem solving context includes actions
and results of actions taken earlier in the problem solv-
ing, as well as features of the problem. Global contertis
the features given for the overall problem situation, in-
ternal contert is the circumstances, state or knowledge
established by the actions already taken as part of the
problem solving. In the automobile troubleshooting
domain, internal context includes tests that have been
done and their results; information or hypotheses that
have been ruled out or ruled in during problem solving;
fixes that have been made during problem solving; and
the current hypothesis. The global context includes
the chief complaint; other symptoms; how frequently
the symptoms occur; how lapg thie problem has been
going on; any particular ambient temperature range
when failure occurs; any particular weather conditions
when failure occurs; the car model; the customer; the
mechanics involved; and where and when the problem
solving occurred. Global context remains the same
across snippets of a case, but internal context changes.

Figure 1 shows an example of the problem solving con-
text part of a snippet.

CASE-TEST-HYPOTHESIS-130
CONTEXT

Internal
Ruled-In (Lean (Position (Idle-Mixture-Screw)))
Ruled-Out (Low (Position (Idle-Speed-Screw)))
(Lean (Position (Idle-Mixture-Screw)))
(Incorrect (Position (Throttle-Dashpot)))
Tests-Done-N-Results
(Temperature Engine-System
(When (Stalls Engine-System)) Cold)
(Hot (Temperature Engine-System))
(Stails Engine-System)
(Stalls Engine-System)
(Small (Distance Throttle.Dashpot-Stem Throttle-Lever))
(Not (Smail
(Distance Throttle-Dashpot-Stem Throttle-Lever))
Fixes-Done (Increase (Position (Idle-Mixture-Screw)))
Solution: NIL
Current-Hypoth (High (Contains Carburetor-Float-Bowl Fuel))

Global
Complaint (Stalls Engine-System)
Other-Sympt (Rough (Run Engine-System))
Frequency Weekly
How-Long 2months
Amb-Temp-Q-Fail Any
Weath.Q-Fuail Rainy
Car-Type (1981 Ford Granada)
Car-Owner Davis Cable
Participants Mark Graves, David Wood
Location Mikes-Repair.Shop
When 2843569149

Figure 1: Example Case Snippet Context.

The problem solving context of a snippet is used
for matching during retrieval. As Barletta and Mark
(1988) have suggested, both internal and global prob-
lem solving context are necessary to maintain coher-
' ence and consistency of actions. Since snippetsinclude
both internal and global problem solving context, re-
trieval results in usefully similar case pieces.

This form of context creates advantages for combin-
ing multiple cases to find a solution. When there is
a need to access part of another case, having the in-
ternal context available allows matching on results of
previous problem solving. Thus a snippet which fol-
lowed from similar steps and results can be favored.
In this way both access issues are addressed: access-
ing a case that is relevantly similar, and accessing the
part of the previous case that will be useful in the cur-
rent context. An appropriately relevant snippet can
be directly accessed. With monolithic cases the inter-
nal context at each point in the problem solving would
not be available to make accessing parts easy. By sav-
ing the context with each piece we are trading space
for flexibility. Any method, in order to be as flexible,
would have to either represent the internal context at
each point, or be able to recompute it at retrieval time,
an expensive proposition.

In addition, though not currently implemented, rep-
resenting the internal context enables analytical rea-
soning that could determine that the current context is
incompatible with something already done prior to the
snippet in the previous situation, thus averting failure.

Pursuit of Goal. Each snippet is centered around
the pursuit of one goal. It is here that the actions
taken in pursuit of a goal and the results of those ac-
tions are recorded. When a snippet is retrieved during
problem solving, these slots suggest the actions to take
and the results to expect if the situation is the same
as in the previous case. We have identified 7 types of
goals involved in troubleshooting, Table 1 lists those
goal types and their associated slots. Figure 2 shows
the slots for a test: the test that was done, the method
of carrying it out, the tools used, and the result. In
general, the goal-related part of a snippet needs to in-
clude the actions carried out to achieve the goal and
the effects of the actions.

CASE-TEST-HYPOTHESIS-130
PURSUIT OF GOAL

Goal G-TEST-HYPOTHESIS
Test (High (Contains Carburetor-Float-Bowl Fuel))
Test-Method

(Turn-Off Engine-System)

(Remove Carburetor-Air-Horn-Screw)

(Remove Carburetor-Air-Horn)

(Ask (Level Fuel Carburetor-Float-Bowl)

Scale-On-Carburetor-Float-Bowl)

Test-Tools Screw-Driver
Test-Result (High (Level Fuel Carburetor-Float-Bowl))

Figure 2: Example Case Snippet Pursuit of Goal.

Goal Type Slots for Goal Type

Generating a hypothesis hypothesis generated

actions taken,

Clarifying a complaint information gathered

Verifying a complaint actions taken

test that was done,
method of carrying it out,
tools used, result

Interpreting a test hypotheses ruled out,
(either of hypotheses hypotheses suggested
or repairs) or ruled in

Making a fix or
replacement

Testing a hypothesis

repiacement or fix done,
method of carrying it out,
tools used

test that was done,
method of carrying it out,
tools used, result

Testing a fix or
replacement

Table 1: Goal Types and Their Slots.

Linkage. While it is important to divide cases into
snippets so that parts of cases can be easily and di-
rectly accessible, it is also important to be able to re-
construct the case. Sometimes a number of steps in the
same case can provide usefu] guidance. A hypothesis
suggests a test, the result suggests an interpretation,
the interpretation suggests a fix, and the fix is associ-
ated with a test of the fix. As long as the expectations
from a previous case are upheld in the new situation,
the reasoner can benefit by following the sequence of
reasoning steps from the recalled case. In order to en-

able such reconstruction, snippets include links to the
snippets for the goals they follow from and the goals
that follow from them. Briefly, the idea is, first, retain
the links so that in the future use of the snippet, the
step that it suggested will be suggested. Second, save
the value of the main slot of the preceding snippet to
facilitate making generalizations involving the previ-
ous step taken. Note that the portion of the snippet
shown in Figure 3 has a slot for the previous hypoth-
esis because it was preceded by a generate hypothesis
snippet, whose main slot was a hypothesis.

CASE-TEST-HYPOTHESIS-130

LINKAGE
Link-Down CASE-INTERPRET-TEST-140
Link-Up CASE-GENERATE-HYPOTHESIS-125

Prev-Hypothesis (High (Contains Carburetor-Float-Bowl Fuel))

Figure 3: Example Case Snippet Linkage.

Links Between Snippets

As mentioned above, snippets are linked together in a
manner that preserves the underlying structure of the
goals pursued in the case. Figure 4 shows the linkages
between snippets for a case of a stalling car. This
case illustrates the differences that can occur between
temporal order and the underlying structure of which
snippets follow from which. Each node represents a
case snippet for a particular goal pursued in the case.
Each link represents a relationship between goals in
the case. Arrows point from a snippet to the snippets
that it suggests.

Preserving these intra-case links is important for fu-
ture use of the case. For example, in diagnosis, the case
structure preserves which hypothesis suggested a test,
and what test result suggested a hypothesis, even if
they were not contiguous in the processing. To demon-
strate this, in Figure 4, step 6 follows from step 3, since
it is a refinement of the previous hypothesis. Step 7
follows from step 4, since it is a test of the hypothe-
sis. Step 11 does not. follow from any of the previous
hypotheses or tests, it is the start of a new direction
after a dead end was reached. This means that the im-
portant structure in a case is not the temporal order
of the actions taken. Rather, it is which goals follow
from which other goals.

For example, in automobile troubleshooting, a hy-
pothesis that the alternator belt is 150se could follow
from a hypothesis that the battery is not charging since
it is a potential root cause. Or a hypothesis that the

radiator hose is leaking could follow from a hypothesis -

that there is a leak in the cooling system, since it is a
narrqwing of a hypothesis.

Preserving this linkage enables a case to provide
guidance as to what to pursue next as long as the re-
sults continue to be the same as in the previous case.
In troubleshooting, this allows retrieval of a case frag-
ment with a particular hypothesis to yield a connection
to the test to do next. The guidance is not affected by

any idiosyncratic temporal ordering that does not re-
flect the underlying structure of the previous case.

[Case Header - Car Stalls I

a
7]
Gl [[
7] [[

Diagnosis Actions (in order presented)

. Hyp - Loose Connected Spark Plug
Test - Loose Connected Spark Plug (Neg.)
Hyp - Malfunction Carburetor
Hyp - Lean Idle Mixture

Hyp - Low Idle Speed

. Hyp - High Float Level

Test - Lean Idle Mixture (Neg.)
Test - Low Idle Speed (Neg.)

. Hyp - High Float Level (restate)

. Test - High Float Level (Neg.)

. Hyp - Malfunction Control System

FoomNonawLe

Figure 4: Case Structure.

Snippet Access
Snippets can be accessed two ways:
o Directly, through retrieval, matching the current sit-
uation to the snippet’s goal and context.
¢ Sequentially, by following links between snippets.
In CELIA, retrieval via direct access is first restricted
to snippets that are centered around the goal type be-
ing considered. Then a weighted similarity metric is
used, with matching occurring for all features within
both the internal and global context. An empirical
adjustment of the weight on a feature’s importance is
made based on the success or failure of prediction dur-
ing learning (Redmond 1989b). As would be hoped,
the similarity metric quickly comes to favor many of
the features in the internal context, and give less im-
portance to features in the global context that seem
spurious, such as the car owner, the participants, and
the location. These, however, are not eliminated, so
they can play a part in some unusual situation in which
they are important. Further work will investigate us-
ing some form of explanation based indexing (Barletta
and Mark 1988) in conjunction with this.

Retrieval by sequential access is easy given our case
representation. Snippets have links to other snippets
that follow from them. When a snippet has been used
to suggest an action, if the result is the same as in the
snippet’s execution, the reasoner can follow the link to
the next goal and its actions. Retrieval by sequential
access is favored over direct access when it is appro-
priate. This retains coherence and avoids unnecessary
processing,

Advantages of the Approach

Our system, CELIA, learns from observing an expert’s
actions (Redmond 1989b, 1989a). It uses parts of mul-
tiple cases for two tasks

o To predict and explain the instructor’s actions as
it is learning. The experience is then saved in the
distributed form we have described here. Redmond
(1989c) explains how this distributed case represen-
tation can be constructed from observing raw input.

o To provide guidance during problem solving.

The distributed case representation has advantages for
both processes. Here we discuss the advantages for
problem solving.

o There is easy access to all parts of previous cases, so
they can be directly accessed when a snippet’s goal
is to be pursued.

e The structure of the case is retained so it can be
reconstructed as a whole or in part when necessary.
The actions taken in the previous case can continue
to provide guidance as long as the situation remains
usefully similar to that of the previous case. Opera-
tionally, in the current system this means as long as
the same results are obtained in the step as in the
corresponding step in the previous case.

¢ Generalizations of case snippets can be formed for

the pursuit of a particular goal, but not hindered by .

the pursuit of other goals in the cases.

While empirical measures of the learning part of the
systemn have been made, our evaluation of the represen-
tational approach is based on the fact that it enables,
without much cost, flexible problem solving that would
otherwise be difficult. With monolithic cases, not only
might the reasoner not have the right indices for the
case, finding the rigﬁt part of a case to use for the
current task situation is effortful. Even if the case is
indexed so that it will be accessed when any of its
parts are relevant (e.g. by important features of the
internal context at each and every point during the
case - the tests done and their results, the fixes done
...), once that case is accessed it is necessary to find
the point in the case’s problem solving where its con-
text best matches the current context. Making this
process as simple as CELIA’s process would require
including all the same information that CELIA’s cases
have — the context at each point during the case (for
indices), directly associated with the step in the case.
This case representation content would not be distin-
guishable from our theory except that our representa-
tion preserves the underlying order of the steps.

The ideas discussed raise some issues. First, as snip-
pets become smaller, the distinction between cases and
situation/action rules may seem to blur. If problem
solving does not benefit from the overall context pro-
vided by a whole case, then the case representation
might be equivalent to individual decision rules. A re-
latediquestion one might ask is whether problem solv-
ing behavior constructed from relatively local decisions
can be globally consistent, or will unforeseen interac-
tions between goals creep in. An advantage of tradi-
tional case-based reasoning techniques is that a whole
case has a coherency that holds together the problem
solving behavior. We do not want to lose coherency

when we break cases into pieces. We have discussed a
number of important ways in which our snippet rep-
resentation differs from decision rules. First, the links
between actions are retained, so a case can be followed
as long as the results of actions are as predicted by the
previous case. Sequential access of snippets leads to
a goal-directed coherence that is not inherent in a set
of individual deciston rules. Second, snippets include
in their context both the initial problem description
and the results of actions taken up to that point. This
means that when direct access is used the choice of ac-
tions to take is directly influenced by the problem solv-
ing that has already occurred. Third, the case snippet
can provide useful suggestions even when there is only
a partial match to the current situation (i.e. when a
rule may not apply).

Another issue we must address is what size snippet
is most useful for problem solving. There is a trade-off
between the efficiency of being able to match and use
a single case as the solution to the problem, and the
generality of matching to the parts that are applicable
in the current situation. We have suggested that the
appropriate division is for each snippet to concern a
single goal. We should clarify that this means that
they are concerned with a leaf goal. A high level goal
such as ezplain anomaly would be broken down into
subgoals using knowledge of goals and subgoals. The
lowest level goals are the ones that the reasoner would
look for guidance in achieving. It is this level of goals
that the case snippets are organized around. Applying
this to the advantages suggested above, the approach
has these advantages:

e Direct access is to the parts of previous cases in-
volved in the pursuit of the types of goals that the
problem solver seeks guidance in achieving.

o When generalization of case snippets is added, it can
be done for the pursuit of a particular low-level goal
for which the reasoner might later want guidance.

It might be argued that the number of indices nec-
essary increases as the cases are divided into smaller
chunks and each chunk requires indices. However, if
parts of the larger chunks are to be accessible, then
equivalent numbers of indices are necessary in order
to be able to get an indication that some part of the
larger chunk would be of value in the current circum-
stances. Thus, snippet size and number of indices are
independent of each other.

This division of cases into multiple snippets based
on goals pursued is important when multiple cases
are used to solve different parts of a problem. When
changes lead to the need to access a different case to get
help pursuing a goal, the part of the case that should
be accessed is available such that it can be found in a
timely manner. Such division would not be important
in a domains in which cases can only be considered as
a whole (as in e.g. HYPO (Ashley & Rissland 1987)).

Related Work and Conclusions

Most CBR approaches have represented cases as single
units and reasoned based on one case. MEDIATOR
(Simpson 1985) made use of parts of multiple cases in
coming to a solution. However, MEDIATOR had to
first choose a case, then access the relevant part. More
recently, several CBR approaches have separated cases
into pieces.

JULIA’s (Kolodner 1989; Hinrichs 1988) case pieces
represent scenes that are related partonomically and
taxonomically. Its snippets, like CELIA’s, facilitate
synthesizing parts of multiple cases to form a solution,
and effective generalization. JULIA does not need
the type of links used in our representation, however,
because of the relatively low amount of difference in
structure of cases, and a relatively static set of goals
across problems, with limited need to pursue them in
any particular order.

erivational Analogy (Carbonell 1986) is somewhat
similar to our approach in that it saves the problem
trace, including generation of subgoal structures and
generation of alternatives. A key difference is that our
approach provides both direct and sequential access
to parts of the problem solving. Derivational Analogy
only accesses a trace at the beginning of a problem. If
a case can no longer provide guidance a different case
must be accessed from the top and the reasoning fol-
lowed from there. The start of the problem trace is
accessed when it shares a subgoal chain with the cur-
rent situation. Therefore, derivational analogy cannot
retrieve a case or part of a case with a similar current
subgoal but a different way of getting to it.

Barletta and Mark (1988) group their cases into
pieces such that the actions that are used to recover
from each of the hypothesized faults are in the same
piece. This serves part of the purpose of dividing the
cases into pieces, direct access to relevant actions. It
appears to be specific to the particular goal of fixing a
known fault, however. It is not as flexible as organiza-
tion by goals, in that it serves a particular goal type,
fixing a problem, but does not allow easy direct access
to all the goals pursued in the previous case.

Kopeikina, Bandau, and Lemmon (1988a, 1988b)
suggested the need for cases that represent how a situ-
ation develops over time. Their approach was to divide
a case into problem description; action plan; descrip-
tion of effect of implemented action; description of the
‘no need for treatment state’; remove controls; and de-
scription of a ‘no problem state’. Such a case is always
accessed at the beginning, and all of the main actions
are within the second piece. If the results are not as
expected, another case can be used to recover from
that pew problem, however, it is accessed from the be-
ginning as a whole case. They argue against dividing
cases up into unconnected individual cases, but do not
consider an approach such as ours. Our use of snip-

pets which retain both the internal context, and the .

internal structure of the case addresses this need.

The use of parts of multiple cases, and the division
of cases into linked, goal-centered fragments provides
flexibility to recover from changes or unexpected re-
sults, while retaining goal-driven processing. The case
representation enables direct access to usefully similar
parts of previous cases, while retaining the opportu-
nity to follow significant portions of a previous case.
When generating a multi-step solution and the solu-
tion can be synthesized from multiple cases, our dis-
tributed case representation provides significant flexi-
bility advantages. This is important in numerous do-
mains, including automobile troubleshooting, medical
diagnosis, many design problems, and we suspect any
problem solving task that is solved by addressing sub-
goals individually.

References

K. Ashley and E. Rissland 1987. Compare and contrast, a test of
expertise. In Proceedings of the National Conference on Artifi
cial Intelligence (AAAI-87), San Mateo, CA. Morgan Kaufmann.

R. Barietta and W. Mark 1988. Breaking cases into pieces. In
Procesdings of Case-Based Reasoning Workshop, St. Paul, MN.

J. Carbonell 1988. Derivational analogy: A theory of reconstruc-
tive problem solving and expertise acquisition. In R. Michalski,
J. Carbonell, and T. Mitchell, editors, Machine Learning: An
Artificial Intelligence Approach, Volume II. Morgan Kaufmann,
Los Altos, CA.

T. R. Hinrichs 1988. Towards an architecture for open world
problem solving. In Proceedings of a Workshop on Case-Based
Reasoning, San Mateo, CA. Morgan Kaufmann.

J. Kolodner and R. Simpeon Jr. 1984. A case for case-based rea-
soning. In Proceedings of the Sizth Annual Conference of the
Cognitive Sciencs Society, Hillsdale, NJ. Lawrence Eribaum As-
sociates.

J. Kolodner 1988. Retrieving events from a case memory: 8 par-
allel implementation. In Procsedings of a Workshop on Case-
Based Reasoning, San Mateo, CA. Morgan Kaufmann.

J. Kolodner 1989. Judging which is the “best” case for a case-
based reasoner. In Proceedings of the Second Workshop on Case-
Based Reasoning, San Mateo, CA. Morgan Kaufmann.

L. Kopeikina, R. Bandau, and A. Lemmon 1988a. Case-based
reasoning for continuous control. In Proceedings of a Workshop
on Case-Based Reasoning, San Mateo, CA. Morgan Kaufmann.

L. Kopeikina, R. Bandau, and A. Lemmon 1988b. Extending
cases through time. In Procesdings of Case-Based Reasoning
Workshop, St. Paul, MN.

J. Lancaster and J. Kolodner 1988. Varieties of learning from
problem solving experience. In Proceedings of the Tenth An-
nual Conference of the Cognitive Science Society, Hillsdale, NJ.
Lawrence Eribaum Associates.

M. Redmond 1989a. Combining case-based reasoning,
explanation-based learning and learning from instruction. In Pro-
ceedings of the Sisth Annual International Workshop on Ma-
chine Learning, San Mateo, CA. Morgan Kaufmann.

M. Redmond 1989b. Combining explanation types for learning
by understanding instructional examples. In Proceedings of the
Eleventh Annual Conference of the Cognitive Science Socsety,
Hillsdale, NJ. Lawrence Eribaum Associates.

M. Redmond 1989c. Learning from others’ experience: creating
cases from examples. In Proceedings of the Second Workshop on
Case-Based Reasoning, San Mateo, CA. Morgan Kaufmaas.

R. L. Jr. Simpson 1985. A Computer Model of Case-Based Rea-
soning in Problem Solving. PhD thesis, Georgia Institute of
Technology, Atlanta, GA.

Cc QS’“‘?‘”""' RSN L/@»\Q!Q
(C

AN
[:

What Should I Do Now?
Using Goal Sequitur Knowledge to Choose the Next Problem Solving Step !

Michael Redmond
School of Information and Computer Science
Georgia Institute of Technology
Atlanta, Georgia 30332-0280
E-mail: redmond@pravda.gatech.edu

Abstract

Many problems require multi-step solutions. This is true of both planning and diagnosis. How
can a problem solver best generate an ordered sequence of actions to resolve a problem? In many
domains, complete pre-planning is not an option because the results of steps can vary, thus a large
tree of possible sequences would have to be generated. We propose a method that integrates the use of
previous plans or cases with use of knowledge of relationships between goals, and the use of reasoning using
domain knowledge to incrementally suggest the actions to take. The suggestion process is constrained
by heuristics that specify the circumstances under which an instance of a particular reasoning goal can
follow from an instance of other reasoning goals. We discuss the general approach, then present the
suggestion methods and the constraints.

1 Introduction

There are many problems for which a multi-step solution must be generated. Such problems occur both
in planning and in diagnosis. For instance, in automobile troubleshooting, a possible sequence of actions
includes clarifying the complaint, verifying the complaint, generating hypotheses in some order, testing
hypotheses, interpreting the test results, carrying out repairs, and testing the repairs. Complete pre-planning
of troubleshooting steps may be inefficient. The number of possible choices and the variety of possible results
of the actions can lead to a large, very bushy tree of possible paths. Generation of the complete trouble-tree
for the given car and problem would be an expensive task to do, and might not even be possible. In addition,
one action may not directly follow from the previous action. The question raised is how to best generate an
ordered sequence of actions to resolve a problem.

For example, for a stalling car, a possible sequence of actions is shown in Figure 1. The problem solver
first hypothesizes a loose spark plug and a test of the hypothesis finds it not to be true. The problem solver
hypothesizes that the carburetor is malfunctioning, then refines that guess to the more specific hypothesis of
the idle mixture being lean. This is tested and the result suggests that the idle mixture is probably not the
problem. Next, the problem solver generates a hypothesis that the carburetor is flooding, refines that to a
hypothesis that the float level has become set too high, and tests for that. However, the test result indicates
that that is not the problem. The problem solver generates another refinement, that the carburetor needle
valve is leaking, allowing fuel in when it should not. This is tested, and is found to be true. A repair is done,
and is tested, and results in the elimination of the problem.

These actions are not indepenaent. Results of early actions influence future actions, and results cannot be
predicted with certainty. If the spark plugs turned out to be loose, a repair would be done at that point and
the problem solving would be complete if that is the only problem. If the needle valve is not leaking, further
steps would be necessary beyond those in Figure 1. If, as a by-product of the test of the float level being
hi~gh, it was determined that the fuel level in the carburetor was not too high, a different hypothesis would
have been pursued opportunistically, instead of continuing to pursue the carburetor flooding hypothesis.

This example illustrates several points. First, it shows a situation where complete pre-planning \\'QU]d
be inefficient. Not only can the number of possible choices and the variety of possible results of the actions
lead to a large, very bushy tree,of possible paths, but in many problems much of the tree would not be used.
Second, it illustrates that when choosing the next action to take, the next action may not follow from the

1 This research has been supported by the Army Research Institute for the Behavioral and Social Sciences under Contract
No. MDA-903-86-C-173, and by DARPA contract F49620-88-C-0058 monitored by AFOSR. The author wishes to thank JU?“
Kolodner for her advice and guidance, and Tom Hinrichs, Steve Robinson, and Joel Martin for helpful comments on carlier
versions of the paper. '

970

most recent action. For example, step 7 follows from step 3. In addition, following a trouble-tree would not
suggest taking advantage of unexpected opportunities, such as following up of the by-product of a test, as
seen above.

l Case Header - Car Stalls T

/ \
[1. Hyp - Loose Connected Spark Plug ' li Hyp - Malfunction Carburetor I
l 2. Test - Loose Connected Spark Plug] [7. Hyp - Carburetor Flooding I

y:
I 4. Hyp - Lean Idle Mixture L 8. Hyp - High Float Level 7 l 11. Hyp - Carburetor Needle Valve Leaks]

[S. Test - Temperature of Engine When Stall l L 9. Test - High Float Level] [12. Test - Carburetor Needle Valve Lenkt}

| 6. Interpret - Rule Out Lean Idle Mix H 10. Interpret - Rule Out High Floa?] ta. Interpret - Rule In Needle Valve Leaks]

[14. Repair - Replace Carburetor Needle Valve]

The nodes represent the different goal instances that have been pursued. They are numbered in the temporal order in
which they occurred. The links represent the relationships of which goal instance followed from which goal instance.

Figure 1: A Multi-step Solution in Automobile Troubleshooting.

The problem to be addressed in this paper is three-fold:

1. How can a problem solver efficiently generate successive goals and actions in a multi-step solution?
2. What knowledge is needed to generate the succeeding goals and actions?
3. How should the generation process be controlled and suggestions selected?

We address this problem in the task domain of automobile troubleshooting. Our program, CELIA
(Cases and Explanations in Learning; an Integrated Approach), solves problems by generating and achieving
reasoning goals. As in the example above, often later goals cannot be generated until earlier ones have been
achieved. In addition, the program learns by understanding and explaining the statements and actions of
a teacher.? The same process that generates goals during problem solving generates them during learning,
where they act as expectations of what the teacher will do or say next. ’

As we will show, our approach integrates the use of four important types of knowledge to generate
goals: previous solutions or cases (a8 in Case-based Reasoning [Kolodner and Simpson 1984)), knowledge of
relationships between reasoning goals (in this case, knowledge of the troubleshooting process), and causal
knowledge, including structural and functional knowledge of the domain. We will discuss generation of
suggested actions, and control of the process, and then present an example.

2 ‘Generation of New Subgoals and Actions

We have found four types of knowledge useful for generating subgoals and actions:

1. Case knowledge.

2. Causal knowledge of components, mainly functional knowledge.)

3. Structural knowledge of component parts, including part/whole and adjacency relationships.
4. Knowledge of how to do the task, or the relationships between reasoning goals.

2Not natural language.

971

Case Knowledge: Case-based Reasoning (CBR) is a method of using previous episodes to suggest
solutions to new problems. CBR is an important problem solving technique because it allows a reasoner
to solve problems efficiently when previous similar experiences are available and complete knowledge is not
present. In this type of problem, a case provides an ordered set of actions that have worked in the past.
Thus remembering a part of a case, or snippet, suggests the next action. A next action can be suggested by
the case the reasoner is currently reasoning from, or if context changes, by another case that becomes more
relevant.

Causal knowledge: A next action or subgoal can also be suggested by causal knowledge. A causal
link from a previous action can make the suggestion. Some aspect of the previous goal, for example the test
done, the test result, the hypothesis generated, the fix done, something ruled out, is the starting point for
the reasoning. The reasoning can proceed from that point forward toward effects of that aspect, or backward
toward causes of that aspect.® The furthest point of progress in the causal reasoning is suggested as the
value for the instance of the reasoning goal to be suggested. The causal reasoning uses both functional and
structural knowledge of the domain.

Structural knowledge of components: Part/whole and topological knowledge of components involved
in a previous action can suggest the next action. For example, a problem with the electrical system might
be due to a problem with the battery. If the most recent instance of a generate hypothesis goal was that the
electrical system is faulty, the next appropriate goal instance might be the generation of a hypothesis that
the battery is faulty.

Knowledge of how to solve problems in the domain: How problems are normally solved is also
important to generating goal and action sequences. Our method uses heuristic knowledge in the form of a
set of the types of reasoning goals, or goal types, which can follow from each reasoning goal type, called goal
sequitur knowledge, or sequitur knowledge for short.* 3 For example, hypothesis generation goals can be
followed by tests of hypotheses, or by further hypothesis generation.

In general, there are many possible succeeding goals a problem solver might generate at any time. Good
problem solvers generate goals that can lead them toward their final destination in the most opportune way.
In the remainder of this paper we will present a way to choose the next goal or step wisely. We will show
that the fourth type of knowledge listed above, knowledge of the problem solving task, is primary to this
endeavor, providing guidance for moving toward a solution.

Our method uses three main types of heuristics for this task: suggestor heuristics suggest new steps,
restricior heuristics constrain the behavior of the suggestors, and selector heuristics choose the best of the
suggested next steps.

We begin by presenting the four main types of suggestor heuristics:

1. Case Sequential Access
2. Case Direct Access

3. Causal link

4. Refinement (Part/Whdle)

The suggestor heuristics, or suggestors, indicate ways to generate possible instances of the consequent
goal type.® Running these heuristics results in a set of possible succeeding reasoning goals and actions.

3Reasoning is uncoupled from the reasoning goal involved. Given a hypothesis that the fuel mixture is too lean, reasoning
proceeds from the state that the fuel mixture is too lean (which may or may not be true), not from the hypothesis that the
fuel mixture is too lean. Thus the causal reasoning does not depend on the reasoning goals involved in the domain, or vary
depending on those involved. -

* Goal types are general types of reasoning goals such as clarifying the complaint, verifying the complaint, generating hy-
potheses, testing hypotheses, interpreting the test results, carrying out repairs, and testing the repairs. They could also be
considered subtasks of troubleshooting. Goal instances are specific instantiations of goal types, such as the specific test used to
test a specific hypothesis.

5 As non sequitur means an inference or conclusion that does not follow from established premises or evidence, we use sequitur
to refer to a goal or action that follows from a previous goal or action.

6The borrowing of the logical terms antecedent and consequent should not be taken as an indication that the second goal
logically follows from the first. The consequent only plausibly follows from the antecedent.

972

Syt N

R e

2.1 Case Suggestors

As noted above, a case provides an ordered set of actions that have worked in the past. Thus remembering
a case appropriate to the current context suggests the next action. Multiple parts of multiple cases can be
useful in solving a particular problem. Useful parts can be accessed directly, Dy retrieving the relevant part
of a relevant case, or sequentially, by continuing to follow a previous case while it continues to be relevant.
The two suggestors that use parts of previous cases are based on these two methods.

2.1.1 Sequential Access

If the results of running a step in the new situation match those obtained when it was run in the previous
case, the next step in sequence in that case can be suggested. The Continue-following-link suggestor does
this.

2.1.2 Direct Access

If the results are different, however, the Case-snippet suggestor uses direct access to part of a different case
that can provide a suggestion of what to do next. Retrieval involves matching the current situation to the
case part, or snippet’s goal and context. In our system, CELIA, retrieval via direct access is first restricted
to snippets that are centered around the goal type being considered. Then a weighted similarity metric is
used, with matching occurring for all features within the context. The context includes the internal context,
the results of actions taken up to that point in problem solving, so the retrieved piece is influenced by the
results of goals pursued so far in this problem.

2.2 Causal Link Suggestors

Causal link suggestors use domain knowledge of function and structure to reason either forward or backward
from a clause in the preceding goal instance in order to suggest the main clause for the consequent goal
instance.

Variations in these heuristics include:

e Whether reasoning is forward or backward from the initial clause. For instance, reasoning backwards
can lead toward suggesting hypotheses that could be root causes. Reasoning forward can lead to
suggesting tests of hypotheses based on their potential effects.

e Which aspect of the previous goal instance to use as the initial clause. For instance, when reason-
ing from a test of a hypothesis a useful starting point is the test resuit. When reasoning from the
interpretation of a test useful starting points include things ruled in or ruled out.

o Whether the initial clause is returned as a result when no progress is made in the causal chaining.
When the consequent goal type is the same as the antecedent goal type, this is not appropriate.

o Whether to return a contradiction of the linked clause, or just the linked clause. For instance, a test
for a contradiction of something that follows from a hypothesis can be a good test of the hypothesis.

2.3 Refinement Suggestors

Refinement suggestors use part/whole knowledge to suggest a new goal instance through refinement of the
preceding goal instance. Either
v

e Its component is below the previous goal instance’s component in the partonomy, (a leak tn the fuel
line is more refined than a leak in the fuel system). The previous goal instance's component is refined
to a component that is part of the previous component. or

e The component is the same and the new predicate is more specific, (the ECM not being grounded
properly is more refined than a malfunction in the ECM). This requires use of knowledge of the functions
of the involved components. If the predicate is ‘malfunction’, then those predicates that are involved
in obstacles to the component’s function are considered as refinements of the previous predicate.

973

Variations in these heuristics include:

o Whether a clause that is equally as refined is acceptable. When the consequent goal type is the same
as the antecedent goal type, this is not appropriate.

o Which aspect of the previous goal instance to use as the initial clause. For instance, refining the
interpretation of a test, useful starting points include things ruled in or ruled out.

3 Controlling Suggestions: Restrictors

There are, in general, large numbers of possible next steps that could be generated by the methods above.
Restrictors constrain the suggestion process so that effort is not expended trying to generate actions ip
directions that will not prove fruitful. In general, restrictors rule out goal sequences that are sometimes
possible, but are not appropriate in the particular current circumstance. For instance, a test should not
follow from a hypothesis that has already been tested, and a hypothesis should not follow from a hypothesis
that has already been tested. However, a hypothesis can follow from a hypothesis that has already been
refined, it could be another refinement. These examples suggest two of the restrictor heuristics.

No-sibs restricts a goal following from a previous goal to contexts in which no action has already followed
from the antecedent.

Only-same-type-sibs restricts a goal following from a previous goal to contexts in which either no
action has already followed from the antecedent, or contexts in which only actions fulfilling the same goal
type have already followed from the antecedent.

Because some goal types should only follow from the most recent instance of some other goal types,
restrictors are necessary for that purpose. For example, an interpretation of a test should follow from the
most recent test instead of some previous test. This is clearly not the case for all goal sequences. For
example, a number of hypotheses could be advanced, then tested in order, thus the test would not follow
from the most recent hypothesis.

Most-recent restricts a goal following from another goal to contexts in which the previous goal was the
most recent instance of that goal type.

Also needed are restrictors that constrain what can follow from the interpretation of a test. After a
test result has been interpreted, what follows depends on the interpretation. If the hypothesis that is being
pursued has been ruled in, either the hypothesis can be refined further, or a repair can be made. If nothing

has been ruled in, and something ruled out, it is possible that the complaint should be further clarified. The
following two restrictors are used.

Prev-ruled-out restricts a goal following from a previous action to contexts in which the previous
actions included ruling out some condition.

Prev-ruled-in restricts a goal following from a previous goal to contexts in which the previous actions
included ruling in some condition.

4 - Selectors

Even with restriction, several steps might plausibly follow the current situation. Selector heuristics choose
the best of those generated. Selectors work in two stages. Before suggestors are run, some selectors specify
allocations of computational effort to the different suggestors associated with each of the possible future goal
sequences. Then, after generation of plausible next steps, the best next step is chosen based on the rest of
the selectors, and the amount of the allocation used.
The selectors that influence allocations include:
?
1. Allocate more effort to generating possibilities following from more recent goals pursued.
2. Allocate more eflort to generating possibilities following from a leaf node of problem solving.
3. Allocate more effort to generatling possibilities following from a problem solving node closer to the
most recent goal pursued.

974

These allocations serve to limit the processing suggestors can do before cutting off search. This is
important because it keeps the slowest heuristics, such as causal chaining, which can be intractable, from
slowing the process down too much.”

When suggestions have been made, the choice of what goal and action to take is based on the percentage
of allocated effort used in conjunction with the following preferences:

1. Favor possibilities generated using continue-fdllowing—link, then case-snippet, then other methods such
as causal chaining.

2. Favor possibilities generated using goal sequences judged more likely in our analysis of the diagnostic
task.

3. Favor possibilities generated from reasoning goals with more restrictor heuristics. These are less likely
to have inadvertently escaped restriction.

4. Favor possibilities generated from reasoning goals with fewer suggestor heuristics. These are less likely
to be low quality ‘shots in the dark’.

The combined effect of the selectors is to favor continuing following along from the most recent goal,
using a previously retrieved case snippet, or a newly retrieved case snippet. The preference is not absolute,

however. It does not make the easiest suggestor heuristics dominant, because the allocated effort can vary
widely based on the factors discussed above.

5 Example

We will illustrate the process of choosing the next action using the example shown in Figure 2. This is an
English-ized version of a sequence of problem solving steps generated by our program CELIA.® The problem
solver first clarifies the complaint, then verifies the complaint to make sure that the problem can be recreated.
The problem solver hypothesizes that the carburetor is malfunctioning, then refines that guess. The idle
speed is considered, and rejected. The idle mixture is considered, tested, and repaired, and yet the problems
remain. A further hypothesis of the throttle dashpot being out of place is generated, and tested.

Clarify the complaint

Verify the complaint

Generate a hypothesis - carburetor malfunction

Generate a hypothesis - low idle speed

Test hypothesis - temperature of engine when stalling occurs (warm)
Interpret Test - idle speed not a problem; idle mixture possible problem
Repair - Adjust idle mixture screw

Test Repair - engine still stall? (yes)

Interpret Test - idle mixture not the problem

Generate a hypothesis - throttle dashpot out of place

Test hypothesis - distance between throttle dashpot stem and throttle lever small? (no)

el =R o a5 o o e

-

Figure 2: Example Multi-step Solution in Automobile Troubleshooting,.

After step 11, the problem solving can be illustrated by the large nodes of the tree shown in Figure 3.
Nodes represent goals that have been pursued so far. Links represent the sequencing relationships between
the goals. S-Verify-Complaint-118 corresponds to the first step, S-Gen-Hypoth-145 corresponds to step 3 -
Generating a hypothesis, in this instance a carburetor malfunction. The most recently completed action is
ingluded in S-Test-Hypoth-151. At this point the next action must be generated.

The small ovals in Figure 3 show types of possible succeeding goals that can follow from the parts of the
problem solving to this point. The key for the different goal types is given.

The set of possibilities can be reduced significantly using the restrictor heuristics. Shaded ovals in Figure
3 show the effects of the restrictors. These are the directions restrictors have determined not to be fruitful.

TCausal chaining is constrained both by the strategy of trying to form a connection between actions rather than trying to
form a connection over the large space between complaints and root causes, and by selection allocations.

% Actually, it was generated as predictions of what an expert would do by the learning component of CELIA using the same
methods as described for the problem solving component. The problem solving component has not yet had the equivalent
upgrade from the previous version.

975

GClarify Complaint-llglé;,u'//@

!)
S.Verif Complaint-118 ¢/,
(exenn e ()

‘S.Gen-Bypolh-l-iS)
/’r,

e /
D ’l’ll'/ 4 2
‘S-Gen-ﬂypolh-l-ﬂj" /<m>
7

g’rest-ﬂypolh-lsg

. S-G -H th-147 -
D (s-oen-tyee Jé,””/(fﬁ)
/
S.I nterp-Test- 17 13/// PYVIT UL Sdded (74

(LLIIV/
% .A./’ (Si-Test-Hypolh-lﬂ
' i “t 1
G-Replace-?ix-126) ()
J"”/lr'/
¥ =)

(S-Ten-}‘ix-lzz 'u .,
ity
Y

G‘I nt‘rp.-re“. 172}”1””"””

'{”’Il//
o
’,
é)
GOAL TYPES
v - Verify Complaint I - Interpret a test (result)
c - Clarify Complaint R - Make a repair (replace/fix)
G -~ Generate a Hypothasis TR - Test a repair (replace/fix)

TH - Test a Hypothesis

The nodes represent the different goals that have been pursued so far. The links represent the sequitur relationships
between the goals. The small ovals connected to nodes with striped arrows represent the possible goal types that can
follow from the goal types of the nodes.

Figure 3: Remaining Possible Next Goal Types after restriction.

For each of the remaining possibilities there are several applicable suggestors, these are able to generate
26 possibilities including: ,

Goal Type Instance Following from Piece Using Suggestor
G-Interp-Test (Incorrect (Position Throttle-Dashpot)) S-Test-Hypothesis-151 Case~snippet
‘G-Gcn-ﬂypoth (Righ (Contains Carburetor-Float-Bowl Fuel)) S-Verify-Complaint-118 Case-snippet
G-Test-Repair (Small (Dist Throttle-Dashpot-Stem Throttle-Lever)) S-Replace-Fix-126 Case-snippet
G-Test-Repair (Low (Position Idle-Mixture-Scres)) S-Replace-Fix-126 Un-Improve
G-Test-Repair (Increase (Position I1dle-Mixture-Screw)) S-Replace-Fix-126 Equivalent
G-Replace-Fix (Lean (Position Idle-Mixture-Scres)) S-Interpret-Test~171 Fault-Determination
G-Gen-Hypoth (Hole Carburetor-Barrel) S-Gen-Hypoth=-145 More-Refined
G-Cen~Hypoth (Clogged Carburetor-Pipe-To-Venturi) S-Gen-Hypoth-145 More-Refined

From among these, the selector heuristics choose the first action, the interprctation of the test ruling out
the hypothesis of the throttle dashpot being out of place. This suggestion was chosen due to several factors:

976

1. It was generated from the most recent previous goal and actions. Therefore, the suggestor which
generated it was allocated a high amount of processing, of which not much was used in retrieving the
case snippet that suggested the interpretation.

2. 1t was generated from a case snippet. Therefore it was favored at sglection time.

3. Tests (of hypotheses or of repairs) need to be interpreted, so the judged likelihood of an interpretation
of a test following from a test of a hypothesis is high, favoring this suggestion.

6 Related Work and Conclusions

A number of other efforts share some flavor with our approach. Koton [1988] combines use of a number
of reasoning methods. First, associations formed from generalizations of cases are tried, then cases, and
lastly model knowledge. However, the strict ordering of methods used is less flexible. More importantly,
her approach does not generate steps for a2 multi-step solution, but rather a classification. Carbonell (1986]
generates steps for a multi-step solution using a previous case. Domain knowledge is used in adapting the
solution, but one case will either provide a whole solution or have to be abandoned or adapted. Parts of
multiple cases cannot be used. Allen and Langley {1989] generate multi-step solutions using a combination
of generalizations, cases, and domain knowledge (in the form of operators). However, they do not retain
relations between problems and subproblems, so their DAEDALUS system cannot use an entire previous
plan from memory.

Our approach combines the use of several types of knowledge and reasoning techniques. It takes advantage
of knowledge about the relationships between goal types to provide constraint on the problem of coming up
with the next action to do. The problem solving is flexible and can take advantage of the results of previous
actions when deciding what to do next, while remaining goal directed. The approach has three phases —
restrictors limit the number of possibilities to be considered, suggestors generate possible next actions, and
selectors chose the action to take. There are several advantages to the approach. It combines multiple
reasoning methods in a flexible manner. Problem solving is flexible enough to use whatever knowledge is
available, using cases when appropriate cases can be found, domain knowledge when it can be useful. It is a
flexible way of using parts of multiple cases in forming a solution that is a synthesis of steps. Problem solving
can change directions when the results of the problem solving make that necessary. A major side benefit
is that many of the suggestor heuristics can benefit when further knowledge is added to the system, in the
form of new cases or new domain knowledge. Qur system, CELIA, is a learning system, and is designed to
acquire such knowledge. This makes problem solving more effective without having to learn new heuristics.

References

Allen, J. A. & Langley, P. (1989). Using concept hierarchies to organize plan knowledge. In Proceedings of the Sizth Annual
International Workshop on Machine Learning.

Carbonell, J. (1986). Derivational analogy: A theory of reconstructive problem solving and expertise acquisition. In Michal-
ski, R., Carbonell, J., & Mitchell, T., (Eds.). Machine Learning: An Artificial Intelligence Approach, Volume II. Morgan
Kaufmann, Los Altos, CA.

Kolodner, J. & Simpson, R. J. (1984). A case for case-based reasoning. In Proceedings of the Sizth Annual Conjere;zce of
the Cognitive Science Society, Hillsdale, NJ. Lawrence Erlbaum Associates.

Koton, P. (1988). Using experience in learning and problem solving. PhD thesis, Massachussetts Institute of Technology,
Cambridge, MA.

Lancaster, J. & Kolodner, J. (1987). Problem solving in a natural task as a function of experience. In Proceedings of the
Ninth Annxal Conference of the Cognitive Science Society, Hillsdale, NJ. Lawrence Erlbaum Associates.

Lancaster, J. & Kolodner, J. (1988). Varieties of learning from problem solving expericnc.e. In Proceedings of the Tenth
Annual Conference of the Cognitive Science Society, Hillsdale, NJ. Lawrence Erlbaum Associates.

Redmond, M. (1989a). Combining case-based reasoning, explanation-based learning and leaming from instruction. In
Proceedings of the Sizth Annval International Workshop on Machine Learning, San Mateo, CA. Morgan Kaufmann.

Redmond, M. (1989b). Combining explanation types for learning by understanding instructional examples. In Proceedings
of the Eleventh Annual Conference of the Cognitive Science Society, Hillsdale, NJ. Lawrence Erfbaum Associates.

Redmond, M. (1989c). Learning from others' experience: creating cases from examples. In Proceedings of the Second
Workshop on Case-Based Reasoning, San Mateo, CA. Morgan Kaufmann.

977

Improving Case Retrieval Through Observing Expert Problem Solving

Michael Redmond*
College of Computing
Georgia Institute of Technology

Atlanta, Georgia

30332-0280

E-mail: redmond@cc.gatech.edu

Abstract

As case-based reasoners gain experience in a domain,
they need to improve their case retrieval so that more
useful cases are retrieved. One problem in doing this
is that the reasoner who most needs to learn is least
able to explain successes or failures. A second problem
is that uncontrolled pursuit of an explanation could be
very expensive. There are three keys to the approach
presented. First, the student observes expert problem
solving and sets up expectations for what the expert
will do next. When expectations fail, the reasoner has
its failure isolated to a single step, and the correct ac-
tion for the situation has been provided. Second, if the
student can retrieve part of a case that would have sug-
gested a correct prediction, then that case snippet can
be used to limit the explanation process, making the
process more efficient. Third, when no explanation can
be found, the reasoner resorts to empirical adjustment
of feature importance.

Case-based reasoning (CBR) is based on the observa-
tion that experience, retained in the form of cases, can
be used to efficiently and effectively solve future, sim-
ilar problems. A case-based reasoner can improve in
a number of different ways. It can acquire new cases.
Or 1t can improve its case retrieval, so that more useful
cases are retrieved. In Redmond (1989b) we discussed
our approach to acquiring new cases through appren-
ticeship. Part of apprenticeship involves observing and
understanding expert problem solving. This same kind
of experience can be used to improverretrieval of cases.

Improving case retrieval is one of the key issues in case-
based reasoning. Novice reasoners are frequently most
influenced by surface features in retrieving previous ex-
periences (Ratterman and Gentner 1987; Ross 1987). In

P CUR—

*This research has been supported by the Army Research
Institute for the Behavioral and Social Sciences under Con-
tract No. MDA-903-86-C-173, and Contract No. MDA-903-
90-K-0112 and by DARPA contract F49620-88-C-0058 mon-
itored by AFOSR. The author wishes to thank Janet Kolod-
ner for her advice and guidance, and Ashwin Ram for helpful
comments on earlier versions of the paper.

becoming more expert, a reasoner must learn to retrieve
usefully similar cases.

Much of the work on improving case retrieval has fo-
cused on learning indices though explaining a reasoner’s
own successful or unsuccessful problem solving. Learn-
ing indices based on explanations requires at least three
things:

1. Realizing the need to learn.
2. Determining what the correct result should be.
3. Assigning credit for successes or blame for failures.

The problem is that these can be hard. A novice rea-
soner is the most in need of improvement and the least
prepared to learn. A novice may not be able to gener-
ate the correct result. A novice may also have trouble
assigning credit or blame. How can a novice get around
these problems?

Apprenticeship can provide assistance with this prob-
lem. A novice can observe an expert solving a problem.
A good student, who actively follows along with the ex-
ample, sets up expectations at each point in the expert’s
problem solving. When the expectations are incorrect
then he has a failure. The student thus has immediate
feedback. The student realizes the need to learn. The
student has been given the correct result. Most impor-
tant, the failure has been isolated to a single step. This
tighter feedback loop enables learning when it otherwise
might not be possible, and makes learning more efficient.

An example will illustrate some of the issues involved
in improving case retrieval through observing an expert.
A student is observing an instructor solve an automobile
diagnosis problem. This is part of an ongoing mentor
relationship. The instructor has checked whether the
car stalls when cold. The instructor has adjusted the idle
mixture screw and determined that the car still stalls.
The instructor has tightened any loose spark plugs, and
determined that the car still stalls. He has checked if the
throttle dashpot is out of place (it wasn’t), and if the fuel
level in the carburetor was too high (it was). Figure 1
shows the effect of all this on the problem solving context
and also shows some of the more general features of the
problem that were elicited by the instructor. At this
point the reader need only note that there are a

Accepted for the I991 Cognitive Science Conference, Chicago, Illinois

Current Context
Complaint: Car Stalls Out
Other Symptoms: None Reported
Frequency of Problem: intermittent
Temperature When Fail: Cold

Type of Car: 1980 Chrysler LeBaron
Car Owner: Julie Crider

Mechanics Involved: Tom Davis

Ruled In:

Spark Plug Connections Ok Idle Mixture Ok
Carburetor Fuel Level High ***
Ruled Out:
Low Idle Speed
Incorrect Position Throttle Dashpot
Tests Done:
Car Stalls When Cold?
Spark Plugs Loose?
Car Still Stalls?
Too Small a Distance Between Throttle
Dashpot Stem and Throttle Lever?
Too High Level of Fuel in Carburetor Float Bowli?
Test Results:
Car Stalls When Warm
All Loose Spark Plug Connections Tightened
Car Still Stalls -
Distance Between Throttle Dashpot Stem
and Throttle Lever = 2cm
Distance Between Carburetor Float and
Choke Chamber Surface = 3cm

Lean Idle Mixture

Fixes Done:
Increase Position Idle Mixture Screw
All Loose Spark Plug Connections Tightened

Figure 1: Part of Current Context.
number of contextual features, including complex values
for things that had been ruled in and ruled out, tests
done etc.

At this point, the student has set up an expectation
using a part of a case from his episodic memory. The
student had previously been a participant or an observer
of that step. Figure 2 shows most of the context at the

Incorrect Context
Compilaint: Car Stalls Out

Other Symptoms: None Reported

Frequency of Problem: intermittent

Temperature When Fail: Cold

Type of Car: 1979 Chrysler Cordova
Car Owner: Bill Moss

Mechanics Involved: Tom Davis, Kevin Cousins
Ruled In:

Spark Plug Connections Ok Idle Mixture Ok
Idle Speed Ok
Ruled Out:
Lean Idle Mixture
Incorrect Position Throttle Dashpot
Tests Done:
Car Stalls When Cold?
Spark Plugs Loose?
Car Still Stalls? °
Too Small a Distance Between Throttle
Dashpot Stem and Throttle Lever?
Idle System Leak Air?
Test Results:
Car Stalls When Cold
All Loose Spark Plug Connections Tightened
ar Still Stalls
stance Between Throttle Dashpot Stem
and Throttle Lever = 2cm
No Apparent Air Leaks
Fixes Done:
Increase Position Idle Mixture Screw
Increase Position Idle Speed Screw
All Loose Spark Plug Connections Tightened

Low Idle Speed
Idle System Leak Air

Figure 2: Portions of incorrect context.

Correct Context
Complaint: Car Stalls Out
Other Symptoms: None Reported
Frequency of Problem: daily
Temperature When Fail: Cold

Type of Car: 1981 Chrysler Cordova
Car Owner: Paul Crider

Mechanics Involved: Kevin Cousins

Ruled In:

Spark Plug Connections Ok Idle Mixture Ok

Carburetor Fuel Level High *** Idle Speed Ok
Ruled Out:

Lean Idle Mixture
Tests Done:

Car Stalls When Cold?

Spark Plugs Loose?

Car Still Stalls?

Idle System Leak Air?
Test Results:

Car Stalls When Cold

All Loose Spark Plug Connections Tightened

Car Still Stalls

No Apparent Air Leaks
Fixes Done:

Increase Position Idle Speed Screw

All Loose Spark Plug Connections Tightened

Idle System Leak Air

Figure 3: Portions of correct context.

time of the predicted action’s previous occurrence. For
short, we call this the ‘“incorrect’ contezt. The student’s
experience suggests the hypothesis that the choke link-
age is sticking. We call this the ‘incorrect’ prediction
to indicate that it is not an appropriate prediction for
the current situation. The instructor makes a different
hypothesis, that the carburetor needle valve leaks. The
student could have made this prediction, which we call
the ‘correct’ prediction. In the past he had observed the
instructor taking that action. The context from that
previous time is shown in Figure 3. We will call that the
‘correct’ contert. Why is the instructor’s action a better
choice for the current problem solving? The incorrect
context matches a good number of the features of the
current problem. The key difference favors the instruc-
tor’s action, however. The information in the current
context that the carburetor fuel level is high is the key
difference. This information favors the correct hypothe-
sis that the carburetor needle valve leaks. How can the
student improve his case retrieval so that he will make
the correct prediction in the future?

When the student’s expectations are not met, then
the student realizes the need to learn. Apprenticeship
also takes care of the need for the student to know the
correct action. The action taken by the instructor is as-
sumed to be correct. The student still must determine
what features of the current situation make the correct
prediction appropriate, and/or make the incorrect pre-
diction inappropriate. The student’s exposure to that
action in a previous example helps. He knows the con-
text in which the action was previously taken. There
are a number of similarities and differences among the
contexts. A purely empirical approach will place some of
the credit or blame on some spurious features that don’t
make a difference. On the other hand, if the student

tries to analyze all of the feature values in the contexts
and explain why one prediction is more relevant than the
other, that will be expensive. Also, we certainly can’t
assume that a student will always be able to explain
why one prediction is more appropriate. How can these
opposing forces be reconciled?

Our solution makes use of a combination of analyt-
ical and empirical methods. Similarity-based methods
are used to focus explanation. When the student is able
to explain the appropriateness or inappropriateness of a
prediction, the associated case part is marked with that
indication. The indication can be positive, that the pre-
diction made by that part of the case is appropriate in
a situation, in which case we call it an index. The in-
dication can also be negative, that the prediction is not
appropriate in a situation. We call the latter a censor.
In addition, the student empirically adjusts the impor-
tance of matching different features. We first present
the analytical approach to learning indices and censors.
Then we discuss the empirical adjustment.

Analytical Approach - Learning Indices
and Censors

The purpose of learning indices and censors is to im-
prove prediction and diagnosis when they are carried
out through CBR. Redmond (1990a) discussed our case
representation. Briefly, cases are divided into snippets,
each of which contain the information relevant to the
pursuit of one primitive goal. Predictions are generated
by retrieving a case snippet from memory. Each snip-
pet contains the context in which it occurred. This en-
ables similarity assessment, as well as the comparisons
between correct and incorrect contexts mentioned above.
An index is a particularly salient set of features of the
context in which the snippet occurred. During retrieval,
if a situation matches some of the indices, then that sig-
nificantly increases the possibility that that snippet will
be retrieved to provide guidance. The indices can be
parts of contextual features. For example, one of the
test results found in the problem solving leading up to
the snippet might be marked as an index. A censor is a
state (part of a feature) that suggests that a case snippet
is not appropriate in that situation. If in a future situ-
ation that state exists, then the snippet can be rejected
during retrieval.

We call our method analytical feature comparison. It
has five steps which involve distinguishing responsible
features through first comparing feature values, then try-
ing tq.explain the relevance of differences. The initial
feature comparisons are similarity-based, the analysis
comes into play in latter steps. The opportunity to ap-
ply the process occurs when the student, observing the
instructor, uses a case snippet to incorrectly predict the
instructor’s action. The process starts out by retrieving
a snippet that would have predicted the instructor’s

Current Context Ruled In:
Spark Plug Connections Ok
Carburetor Fuel Level High
(a): Part of the current problem solving context.

Idle Mixture Ok

Correct Snippet (case-generate-hypoth-305) Context
Ruled In:
Spark Plug Connections Ok $+<4+4 Idle Mixture Ok 44+
Carburetor Fuel Level High 4+ Idle Speed Ok
(b): Part of the correct snippet’s problem solving context.

Incorrect Snippet (case-generate-hypoth-312) Context
Ruled In:
Spark Plug Connections Ok 44+
Idle Speed Ok
(c): Part of the incorrect snippet’s problem solving context.

Idle Mixture Ok <4+

Figure 4: Portions of snippets involved in learning
an index.

action. For short, we will call this snippet the ‘correct’
snippet. The action itself is an effective additional cue
that enables the correct snippet to be retrieved now. We
will call the snippet that the student used to make the
incorrect prediction the ‘incorrect’ snippet. After the
correct snippet has been retrieved, the process is ready
to begin.

1. Eliminate from consideration features which
are the same in both snippets’ contexts. Features
compared include aspects of the diagnosis, such as the
tests done and their results, things ruled out, etc., as well
as domain dependent features, such as car type. Given
the contexts in Figures 2 and 3, the complaint, the other
symptoms, and the ambient temperature when the fail-
ure occurs are the same in both snippets. Therefore,
they don’t provide a way of distinguishing why the cor-
rect snippet is appropriate in the current context. These
are therefore no longer considered candidates for expla-
nation.

2. Compare the remaining features with the
current problem solving context. Features in which
the current context better matches the correct context
than the incorrect context are selected as candidates. It
is more likely that something in those features would
indicate that the correct snippet is appropriate. For ex-
ample, in Figure 1 the current context’s ‘ruled in’ feature
had the value shown in Figure 4(a). The correct context
and the incorrect context had the ‘ruled in’ values shown
in Figure 4(b) and 4(c). Matches to the current context
are shown by ‘+++’s. The incorrect context’s ‘ruled
in’ was not as close a match as the correct snippet’s
‘ruled in’. Thus ‘ruled in’ will continue to be included
in the candidates. At the same time, the incorrect snip-
pet’s ‘fixes done’ is a better match to the current context
than the correct snippet’s ‘fixes done’. Therefore, ‘fixes
done’ will be eliminated from consideration for explana-
tion. In the example, this step eliminates the frequency
of the problem, the items ‘ruled out’, and the mechanics
involved, since they favor retrieval of the incorrect piece.

Correct Snippet (case-generate-hypothesis-305) Context

Type of Car: 1981 Chrysler Cordova
Car Owner: Paul Crider ***
Ruled In:

Spark Plug Connections Ok

Idle Mixture Ok

Idle Speed Ok

Carburetor Fuel Level High ***
Tests Done:

Car Stalls When Cold?

Spark Plugs Loose?

Car Still Stalls?

Idle System Leak Air?

Too High Level of Fuel in Carburetor Float Bowl? ***
Test Results:

Car Stalls When Cold

All Loose Spark Plug Connections Tightened

Car Still Stalls

No Apparent Air Leaks

Distance Between Carburetor Float and

Choke Chamber Surface = 2cm ***

Figure 5: Remaining portions of correct snippet
after second step of analytical feature comparison.

3. Isolate the parts of the correct snippet’s fea-
ture values that cause the remaining features to
better match the current context. This is to nar-
row the responsibility to parts of features which favor
the retrieval of the correct snippet in the current con-
text. These parts of features are the best candidates for
distinguishing why the correct snippet is appropriate in
the current context. In the current example, for items
‘ruled in’, the isolated part is that the carburetor fuel
level is high. This is the clause that makes the correct
snippet’s ‘ruled in’ better match the current ‘ruled in’.
Figure 5 shows the features remaining after the second
step of the process. The parts of features isolated by this
third step are marked with ‘***’s. This is where the ex-
planation process will be focussed. This completes the
initial feature comparison, which limits the analytical
reasoning done.

4. Try to explain the significance of each of
the remaining parts of features. The learner can
try to relate each to the current action taken by the in-
structor. The student in the example tries to explain the
relationship between the ‘Ruled In’ that the carburetor
fuel level is high and the hypothesis that the carbure-
tor needle valve leaks. An explanation that the student
could (depending of his level of knowledge) construct is
that a leaking carburetor needle valve could enable fuel
to keep flowing into the carburetor float bowl, thus caus-
ing the fuel level to become high.

For learning censors a greater variety of relationships
are useful. The learner can try to relate each remaining
feature part to the current action taken by the instruc-
tor, of to the action suggested by the incorrect snippet.
The relationships themselves can be different. A part of
the current context relating to a ‘contradiction’ of the
incorrect action is a good indication of a need for a cen-
sor. For example, if in a second problem Carburetor Fuel
Level Normal has been ‘ruled in’, that contradicts an in-
correct snippet’s hypothesis that the carburetor needle

valve leaks.

5. If such a relationship can be found, then
the partial feature value is marked as an index
or censor. In the main example, Ruled In: Carburetor
Fuel Level High can be saved as an index to the correct
snippet. In the same or similar situation in the future
the snippet will then be more likely to be retrieved as a
source of predictions or diagnostic actions.

In the second example, the incorrect snippet can be
annotated with the censor Ruled In: Carburetor Fuel
Level Normal. In the same or similar situation in the
future the snippet will not be retrieved as a source of
predictions or diagnostic actions.

We should note some limitations of our approach
to learning indices and censors. First, the matching
of parts of features has to be exact. Some form of
knowledge-based matching like that used by Bareiss
(1989) and Koton (1988) is needed. Fortunately, sub-
stituting knowledge-based pattern matching for simple
matching doesn’t affect the method. It just substitutes
better reasoning capability in steps 1 through 3. Sec-
ond, there is no attempt to learn indices that involve a
conjunction of feature parts. There are certainly situa-
tions in which such an index would be necessary. With
better explanatory capability, the student could learn
more sophisticated indices. Some of the limitations on
explanation may need to be relaxed though, costing the
process some efficiency. Both of these limitations will be
addressed in future work.

Empirical Feature Comparison

Sometimes a learner may not be able to explain why a
prediction is wrong, or why another one might be bet-
ter. The learner is not an expert. When he cannot, he
needs to resort to less powerful, less knowledge-intensive
methods. He can attempt an empirical approach to im-
proving case retrieval. As with learning indices and cen-
sors, apprenticeship helps identify the need to learn. It
also isolates the problem to a single step, and provides
the correct action for the situation. As with learning
indices and censors, the learner can attempt to retrieve
part of another case that would have suggested a cor-
rect prediction. If such a case snippet can be retrieved,
then the contexts can be compared. The differences can
be used to empirically adjust the weights on features in
the matching function. The adjustment method places
greater importance on features that match and lead to
correct predictions. It places less importance on features
that match and lead to incorrect predictions. We should
note that there are results that suggest that people can
learn to distribute their attention among features, giving
different weights to each (Nosofsky 1987). We originally
discussed this approach in (Redmond 1989a). We have
now integrated it with the analytical approach discussed
in the previous section.

Feature ‘Incorrect’ ‘Correct’ Change in Importance
CAR-TYPE Partial No Match less important
CAR-OWNER Match No Match less important

COMPLAINT Match Match

HOW-LONG Match Partial
RULED-OUT Partial Match

TESTS-DONE Partial Match

FIXES-DONE Partial Match

CURRENT-HYP Match Match

WHEN Partial Slight

no change

less important
more important
more important
more important
no change

less important

Figure 6: Example empirical saliency adjustment.

Figure 6 shows how the empirical change is done on
an example incorrect prediction. Those features of the
current context that match the context of the correct
snippet more closely than the context of the incorrect
snippet are made more important. Those features of the
current context that match the context of the incorrect
snippet more closely than the context of the correct piece
are made less important.

The student can also make empirical adjustments
when he is successful. When the student correctly pre-
dicts the instructor’s action, the features of the current
problem solving context that matched the features in
the previous case are made slightly more important. In
future problem solving these empirical adjustments lead
to the features considered important by the instructor
having more influence on the case pieces retrieved.

Related Work

We have addressed the issue of making case retrieval

better. We use a form of apprenticeship to isolate a fail--

ure, and to obtain the correct solution step. Retrieval
of other previous case snippets and comparison of fea-
tures is used to focus explanation. Through explanation,
indices and censors are learned.

Other approaches have been suggested for learning
indices and censors. Hammond (1986), and Simpson
(1985)’s approaches explained instances of their own suc-
cessful problem solving. This requires a significantly
more expert reasoner because the correct steps must be
generated. Hammond and Simpson also emphasized cre-
ating indices to avoid failures. However, in trying to
explain failures their approaches had to consider all fea-
tures. Qur approach limits the consideration of features
to a smaller set. In addition, our approach avoids hav-
ing to match the situation to an abstraction, as in Ham-
mond’s approach, an expensive proposition. Therefore,
our approach saves explanatory effort.

In Barletta and Mark’s (1988) Explanation-Based In-
dexing approach, the reasoner attempts to explain the
relatiqnships of features of the case to the actions taken.
Those features for which an explanation can be formed
are made indices of the case. Qur approach takes more
information into account in order to limit explanatory
effort. Thus our approach is more efficient.

Bareiss (1989)’s PROTOS created both censors that
specified when a case was not appropriate, and ‘differ-

ence links’ which specified the condition in which one
solution should be avoided and another used. But the
instructor did all the distinguishing of which features
should be considered in explaining the failure. PRO-
TOS doesn’t include the initial consideration of an extra
case that our approach does. So our approach offers the
benefit of increased efficiency of learning through initial
similarity-based comparison to other cases.

At a high level, our approach shares similarity with
Lebowitz (1986)’s suggestion to use similarity based
measures to focus explanation. However, we have ap-
plied an instantiation of that general idea to learning
indices and censors.

Empirical adjustment of feature importance was also
suggested by Aha (1989) and Salzberg (1988) in the con-
text of purely empirical instance-based learning. The
contribution here is its use in conjunction with analyti-
cal approaches, as a fallback strategy when the reasoner
doesn’t possess the knowledge necessary to distinguish
why an action is appropriate or inappropriate.

Evaluation

Through the process of observing an expert, a reasoner
can significantly improve its ability to predict the ex-
pert’s actions, and thus its ability to diagnose. The
improvement comes through acquisition of new cases,
learning indices and censors, and through adjusting fea-
ture salience. Qur system, CELIA, which is based on
the model, has been evaluated through presentation of
a sequence of 24 examples of expert problem solving.
Twenty random orders of the examples were presented.
The performance measure was the average accuracy of
the system’s predictions of the expert’s actions. The
improvement over the course of exposure to examples is
seen in the data presented in Figure 7.

An ablation study showed that the by the end of
the example sequences, the effect of the learning meth-
ods is starting to be seen. We lesioned the functions
which learn indices and censors, and which adjust fea-
ture saliency. By the last 6 examples in the sequences,
the average performance advantage for including these
approaches was two percent. This difference is not that
large, but for some problems the advantage was as high
as 10 percent.

We expect that the effects will be larger with greater
experience. To this experience level, not that many in-
dices are learned. ! Many of these are learned late in the
sequences, leaving little time for them to be useful. The
system doesn’t have a strong domain model, so in many
instances it cannot explain the importance of different
feature values. With greater experience, this problem
will gradually become less of a factor. In addition,

! An average of 1.2 are learned per observed example. An
average example has 37 steps, which become 37 snippets.
The range is from 18 steps to 79 steps.

0.0 Frrrprevprrrrrerreyy

0 4 8 12162024
Example

Figure 7: CELIA: Average results of exposure to
sequence of examples. Average accuracy for reasoner
predicting observed expert problem solving actions.

the student will have opportunities to use the indices
and censors learned late in the test period.?

The approach has several advantages over previous
approaches. The use of instruction through worked out
examples, in conjunction with the student making pre-
dictions, shortens the feedback cycle, making learning
more likely and more efficient. The retrieval and com-
parison of an additional case helps limit efforts at expla-
nation. Third, the use of empirical adjustment of feature
importance allows the student to become better at re-
trieving appropriate case pieces even when he is unable
to explain failures.

Conclusions

In order for a case-based reasoner to improve its perfor-
mance, it must acquire more cases and improve its case
retrieval so that the right cases are retrieved at the the
right times. When the reasoner uses part of a previous
case to suggest an incorrect action, that case snippet
needs to be marked as to what makes it not relevant in
the current situation. If a part of a case would have sug-
gested the correct action, that case snippet should be
marked with the features of the current situation that
make it relevant. The student must try to form an ex-
planation based on the incomplete knowledge that he
has.

Our approach to learning indices and censors offers the
benefit of increased efficiency of learning through initial
similarity based comparison to other cases and through
immediate direct feedback available through observation
of expert problem solving. Our case 'representation fa-
cilitates the learning process. Each snippet contains the
pursuit of one primitive goal and the context in which
it occurred. This enables the necessary comparisons be-
tween correct and incorrect contexts. The general ap-
proach allows the student to obtain the correct action for

- the current situation from the instructor, and attempts

21t should be noted that some orders of presentation of
examples will facilitate index learning. This ablation study
did not take that into account. If example order can be
controlled then learning can have a greater effect.

to distinguish when the correct and predicted actions are
appropriate or not.

Learning indices, learning censors, and adjusting fea-
ture salience result in improving case retrieval. All three
of these types of learning fit neatly within our general ap-
proach of learning by observing expert problem solving.
Much of the power of CBR comes from retrieving useful
cases, 30 this learning improves the case-based reasoner.
Indices help the reasoner retrieve case snippets when
they would be particularly relevant. Censors help the
reasoner avoid being misguided by a snippet which may
seem to be relevant but isn’t. Improved knowledge of
feature salience will lead to less consideration of superfi-
cial and spurious features during similarity measurement
prior to use of indices and censors.

References

D. W. Aha. Incremental, instance-based learning of independent
and graded concept descriptions. In Proceedings of the Sizth An-
nual International Workshop on Machine Learning, San Mateo,
CA, 1989. Morgan Kaufmann.

R. Bareiss. Exemplar-based knowledge acquisition: a unified ap-
proach to concept representation, classification, and learning. Aca-
demic Press, New York, NY, 1989.

R. Barletta and W. Mark. Explanation-based indexing of cases. In
Proceedings of a Workshop on Case-Based Reasoning, San Mateo,
CA, 1988. Morgan Kaufmann.

K. J. Hammond. Learning to anticipate and avoid planning prob-
lems through the explanation of failures. In Proceedings of the Na-
tional Conference on Artificial Intelligence (AAAI-86), San Ma-
teo, CA, 1986. Morgan Kaufmann.

P. Koton. Using experience in learning and problem solving. PhD
thesis, Massachussetts Institute of Technology, Cambridge, MA,
1988.

M. Lebowitz. Concept learning in a rich input domain:
Generalization-based memory. In R. Michalski, J. Carbonell, and
T. Mitchell, editors, Machine Learning: An Artificial Intelligence
Approach, Volume II. Morgan Kaufmann, Los Altos, CA, 1986.

R. M. Nosofsky. Attention and learning processes in the identifica-
tion and categorization of integral stimuli. Journal of Ezperimental
Psychology: Learning, Memory, and Cognition, 13:87-108, 1987.

M. J. Ratterman and D. Gentner. Analogy and similarity: Deter-
minants of accessibility and inferential soundness. In Proceedings
of the Ninth Annual Conference of the Cognitive Science Society,
Hillsdale, NJ, 1987. Lawrence Erlbaum Associates.

M. Redmond. Combining explanation types for learning by un-
derstanding instructional examples. In Proceedings of the Eleventh
Annual Conference of the Cognitive Science Socsety, Hillsdale, NJ,
1989. Lawrence Erlbaum Associates.

M. Redmond. Learning from others’ experience: creating cases from
examples. In Proceedings of the Second Workshop on Case-Based
Reasoning, San Mateo, CA, 1989. Morgan Kaufmann.

M. Redmond. Distributed cases for case-based reasoning; facilitat-
ing use of multiple cases. In Proceedings of the National Conference
on Artificial Intelligence (AAAI-90), Boston, MA, 1990. Morgan
Kaufmann.

B. H. Ross. This is like that: The use of earlier problems and the
separation of similarity effects. Journal of Ezperimental Psychol-
ogy: Learning, Memory, and Cognition, 13:371-416, 1987.

S. Salzberg. Exemplar-based learning: Theory and implementa-
tion. Technical Report TR-10-88, Harvard University, Center for
Research in Computing Technology, 1988.

R. L. Jr. Simpson. A Computer Model of Case-Based Reasoning
in Problem Solving. PhD thesis, Georgia Institute of Technology,
Atlanta, GA, 1985.

Appendix F
CORA
Selected Papers

Martin, J. (1988). Retrieving Reasonable Predictions from Case Bases. In Proceedings
of the 1988 AAAI Case-Based Reasoning Spring Symposium.

Martin, J. (1989). Focusing Attention for Observational Learning: The Importance of
Context. In Proceedings of IJCAI-89.

From the Proceedings of the 1988 AAAI CBR Workshop.

Retrieving Reasonable Predictions From Case Bases!
Joel Martin
Georgia Institute of Technology
Atlanta, Georgia 30332-0260
E-mail:joel@gatech.edu (404)-894-5550

Abstract

Past experience is a major source for improving predictions in a reasoning system.
These predictions, however, cannot be retrieved haphazardly. They must be retrieved
when they are most likely to be correct and useful. Retrieving a prediction based on
overall similarity between a past case and a current one is useful when nothing is known
about a domain, but it is not enough in general. Even ranking different features by their
importance is insufficient, because it does not take the retrieval goals or the context into
account. A retrieval method is proposed that uses a form of context dependent importance
ranking of features. This method actually learns the importance ranking appropriate for
different goals and contexts. The learning provides a justification for the predictions made,
and provides flexibility in changing domains. Further characteristics of the method for
complex, abstract features are presented. Finally, possible future extensions are discussed.

1 Introduction

Any Al system that is to autonomously improve its performance must be able to learn from
its experience, that is, from instances or cases. Presumably, information from certain past
cases will somehow help predict portions of future cases or experiences. If, for example,
Sarah became sick the last time she ate scallops, she may wish to avoid them in the future
predicting that they again will make her sick. This example prediction seems reasonable but
there are conceivable predictions that are not reasonable. Sarah, for instance, would not
conclude that orange juice would make her sick just because scallops once made her sick.
The first prediction is reasonable because there is some relation between the past and current
cases. Reasonable predictions do not come from simple, haphazard use of past experience.
Therefore, to make reasonable predictions from experience, an Al system must specify what
characterizes good predictions and use those characteristics for retrieval.

A naive method for reasonable retrieval would search for the overall most similar past case
and project some of its information to the current situation. The overall most similar past
case is one that shares the fmost features with the current case. This is certainly a reasonable
approach when little is known about the domain (Russell, 1987). When something is known,
however, overall similarity can generate unreasonable predictions (Kolodner, 1989; Russell,
1987). For example, although 453 + 789 = 1242 is very similar to 453 + 789 =7, neither
the answer nor the reasoning method can be correctly projected to the new case. A more
appropriate retrieval method would find the most similar match by primarily considering
the tmportant features of the present and past cases, such as the arithmetic operator in the
above example. Actually, even this is not enough, because the important features can change
depending upon the retrieval goal. For instance, when trying to predict whether Frank has

1The author wishes to thank Janet Kolodner and Mike Redmond for helpful comments on this manuscript.
This research was supported by the Army Research Institute under Contract No. MDA-903-86-C-173.

an accent, his first language and birthplace are important aspects; whereas when trying to
guess his age, hair color and wrinkles become important. The importance ranking of features
then, must be dependent upon the retrieval goal? (Kolodner, 1989; Russell, 1987; Seifert,
1988). There is one additional requirement for reasonable retrieval. Even when the retrieval
goal is the same, the current contert can influence feature importance. For example, when
someone buys books as gifts, features of the intended recipient can help determine which
other features are important. When choosing a book for a child, the reading level or difficulty
is very important, while the binding and copyright date are less important. However, when
choosing a book for a book collector, binding and date become very important, while reading
level is less so. To summarize the above, reasonable retrieval requires identifying similarities
between the past and current cases. However, these similarity measures should only consider
features that are, in some sense, important. Feature importance is dependent on both the
retrieval goal and the retrieval context.

In order to actually retrieve reasonable predictions using importance, there must be some
justification or rationale that defines which features are most important for prediction in any
given situation. There are possibly many such rationales, but one that may be particularly
useful is a probabilistic justification. In this view, feature importance depends on the con-
ditional probability between values of the retrieval goal and the current context. The use
of probabilities potentially allows identification of the most probable predictions. This view
also allows learning of feature importance to reduce the burden on a programmer and to
allow flexibility for domains in which feature importance varies over time. This paper argues
for a retrieval method, embodied in a system called CORA-L, that learns context dependent
importance values from cases.

2 CORA-L

Briefly, CORA-L maintains conditional probabilities between all pairs of feature values; and
if those conditional probabilities are found to give poor predictions in some contexts, new
features that are conjunctions of values are formed (Martin, 1988). This is essentially a dis-
tributed memory representation, not unlike some PDP approaches (McClelland & Rumelhart,
1986). Input cases are stored distributed across many features; and, if the given features are
inadequate to predict aspects of the cases, then combinations of features are learned. Al-
though this depiction of CORA-L is an oversimplification that ignores the complexity of
realistic domains, it is argued that this simple notion is all that is needed to describe the
retrieval of reasonable predictions from past cases. The next section discusses how CORA-L
deals with more complex, realistic representations.

In CORA-L, predictions are retrieved from memory by using the known values to find
the most probable unobserved value of a particular attribute. Specifically, stored conditional
probabilities between values of the target attribute and the context are compared and the
most likely prediction is made. For instance, suppose that a doctor sees a patient with a severe
féver and a hacking cough, and that she wants to hypothesize what the underlying disease

21t is important to distinguish the retrieval or prediction goal from possible problem solving goals. The
retrieval goal is essentially a specification on the type of value to predict. For example, a retrieval goal might
direct retrieval to predict the value of a particular attribute. The problem solving goal, on the other hand, may
be a goal that the retrieval goal is serving. CORA-L treats problem solving goals and constraints as any other
attribute in the givens. The problem solving goal is not a priori given special status, but, in general, the goal
will be highly informative and therefore more important.

might be. CORA-L would combine P(strepthroat | cough) and P(strepthroat | fever) by
the following formula:

P(strepthroat | cough) - P(strepthroat | fever)
2

P(strepthroat | cough& fever) =

This formula uses a version of an arithmetic average to estimate the probability with multiple
givens (Martin, 1988). In general, the formula is,

P(B | Ai&As&As,..) = w

For the above example, CORA-L would use this formula to perform similar calculations for
alternative diseases, and the one with the highest probability would be predicted.

When the conditional probabilities with only one given feature, such as P(strepthroat |
fever), do not allow the generation of good predictions by the above formula, then new
features are created by combining two previous features. In the above example, if ‘fever’ alters
the importance or predictivity of ‘cough’ or vice versa, then a new conditional probability
would be formed to explicitly keep track of P(strepthroat | cough& fever).

CORA-L’s method has all the characteristics of reasonable retrieval outlined in the intro-
duction. The use of similarity is weighted by feature importance and this weighting depends
both on the present context and on the value or values to be predicted. Importance is im-
plicitly defined as a kind of informativeness. Informativeness is basically the ability of a
particular value to distinguish between the multiple possible values of the target attribute.
A very informative value will provide strong support for one or two of the values of that at-
tribute while providing very weak support for other possible values. For example, a yellowing
of the whites of the eyes is very informative of hepatitis. In this scheme, those values that are
most informative and hence most important with respect to the retrieval goal automatically
have a greater effect on which value will be predicted than would less informative values.
This definition is very similar to Swaminathan’s (1988) proposal of choosing indices that
increase associativity and discriminability, except that in CORA-L, these ideas are defined
in terms of conditional probabilities. Sensitivity to the retrieval goal is possible, because
multiple conditional probabilities and hence importance values are stored. That is, when the
goal is to find a value for attribute-A, different conditional probabilities are used than when
the goal involves attribute-B. Finally, because of CORA-L’s learning of compound features,
the present context can alter the informativeness of a given value, even if the retrieval goal
remains the same.

CORA-L, therefore useg feature importance to retrieve predictions. As well, the impor-
tance ratings are dependent on both the retrieval goal and the context of the present case.
Not only does CORA-L meets these necessary conditions for reasonable predictions, but it
also uses empirically justified importance values. The law of large numbers implies that as
the size of the case base increases so will the accuracy of CORA-L’s conditional probabilities.
The prediction accuracy will likewise increase.

3 Abstract Features

Most real-world domains have more complex structures than was implied by the simplifying
assumptions in the last section. The JULIA (Hinrichs, 1988) domain of catering, for example,

uses multiple hierarchies to describe food items and requires ways to describe combinations of
food items. The texture of chocolate liqueurs might be described as some type of combination
of ‘soft-chewy’ and ‘thin-liquid’. This example assumes combining relationships, like ‘inside’,
and hierarchies of solid and liquid textures. To capture these more complicated structures,
CORA-L allows hierarchies of features in which each parent describes a set of mutually ex-
clusive alternatives (XOR), a set of alternatives (OR), or a combination of values (AND)!.
The AND type of hierarchy corresponds roughly to the CORA-L’s learned combinations as
described above, but it also includes information about the relationship between the ANDed
features. The OR and XOR hierarchies have probabilities associated with the children to
allow for fuzzy or probabilistic concept definition. The use of these hierarchies greatly com-
plicates the updating of probabilities and retrieval of predictions described above. However,
it allows the use of the most informative features, at any level of abstraction, when retrieving
predictions. Also, it allows the prediction of abstract features when more specific predictions
are not well supported.

4 Concluding Remarks

A method is proposed for the retrieval of predictions and is shown to find reasonable and
empirically justified predictions. Additional characteristics of the method for complex rep-
resentations are presented. The complete paper will expand each of the above sections and
in particular will present a running example to illustrate the method and its extension. The
concluding section will suggest future directions such as learning about continuous numeric
values and learning temporal sequences.

References

Hinrichs, T. (1988). Towards an architecture for open world problem solving. In Proceedings of the DARPA
Case-Based Reasoning Workshop.

Kolodner, J. (in press). The mediator: analysis of an early case-based problem solver. Cognstive Science,
Cognstive Science.

Martin, J. D. (1988). Cora: a best match memory for case storage and retrieval In Proceedings of AAAI
Case-Based Reasoning Workshop.

McClelland, J. L. & Rumelhart, D. E. (1986). Parallel Distributed Processing: Ezplorations in the Microstruc-
ture of Cognstion, Vol I. Cambridge, MA: MIT Press.

Russell, S. J. (1987). Analogical and Inductive Reasoning. PhD thesis, Stanford University, Stanford, CA.

Seifert, C. M: (1988). A retrieval model for case-based memory. In Proceedings of AAAI Case-Based Reasoning
Workshop.

v Swaminathan, K. (1988). Properties of an indexing scheme. In Proceedings of AAAI Case-Based Reasoning
Workshop.

1These types are related to the notion of partonomies (AND) and taxonomies (XOR, OR) but are more
general and possibly more flexible.

.

o AN AN ISR

detep fedl at ©JeRL-%9

Focusing Attention for Observational Learning:
The Importance of Context

Joel Martin
School of Information and Computer Science
Georgia Institute of Technology
Atlanta, Georgia 30332-0260.
. E-mail:joel@gatech.edu

Area: Fundamental Problems, Methods, Approaches
Subarea: Cognitive Modeling

Abstract

When learning language or natural category structure, humans do not
need instruction or explicit feedback; they learn through active obser-
vation. Computational models of this type of human learning not only
aid in the description of human learning but also suggest possibilities for
machine learning. A significant component of human observational learn-
ing is the ability to focus attention toward important or relevant input
features. An attention mechanism with this capability can serve as an
inductive bias to facilitate learning. Past attempts to model attentional
focus for human learning have postulated a single salience value for each
feature. Features with greater salience command more attention. How-
ever, these models assume that the feature’s salience is not dependent
on context, whereas studies of human attention show sensitivity to con-
text. As well, sensitivity to context can allow more complex learning.
This paper presents a mechanism for contextually focused attention in
observational learning. The new mechanism is compared to the salience
method. Discussion of the results includes predictions for human behavior
and implications for machine learning.

Observational learning is a form of inductive knowledge acquisition in which
there is no external guidance, such as explicit feedback. However, some guid-
ance or learning bias is required to make general induction tractable (eg. Van-
Lehn, 1987). Since humans do engage in some observational learning (Billman,
Heit, & Dorfman, 1987), there must be a method for snternally guiding this
learning. Discovering what this method is will prove useful both for under-
standing human learning and for designing computer programs that learn from
observation. Zeaman and House (1963) and Billman and Heit (1988) have ar-
gued that attention directed by learnable feature saliences may-provide some

!The author wishes to thank Dorrit Billman for providing constructive comments on all
aspects of this research, and Janet Kolodner for assistance with earlier versions of this paper.
This research was supported by the Army Research Institute for the Behavioral and Social
Sciences under Contract No. MDA-903-86-C-173.

internal guidance for human learners. They each proposed a mechanism for
doing this and were able to confirm the approach for simple learning. Neither
method used context, or what is already known about an example, to help
focus attention. Other researchers, however, have found that human attention
and other cognitive processes vary with context (Loftus & Mackworth, 1978;
Barsalou & Medin, 1986). As well, the use of context can allow learning of more
complex examples. The non context approach assumes that there is only one
important subset of features that are always salient. As will be demonstrated
below, when this assumption is violated, learning is not facilitated.

Given that attention is useful for human and machine observational learn-
ing, it is important to ensure that proposed attentional mechanisms support a
useful type of learning. Human observational learning is most clearly useful for
natural language and concept acquisition. Additionally, many machine learn-
ing studies of observational learning have concentrated on concept or category
acquisition (Schlimmer, 1986; Fisher, 1987). These types of knowledge have
frequently been described as capturing correlational feature structure (Rosch,
1978; Medin & Schaffer, 1983; Fisher, 1987). In other words, category struc-
ture and linguistic structure can be represented partially by correlational rules
or conditional probabilities of the form: P(featurel = valuel | feature2 =
value2). Thus, a “rule” such as, P(covering = feathers | locomotion =
wings), records the frequency with which ‘feathers’ occur given that ‘wings’ is
true. Anderson (1988) has further argued that even if human category struc-
ture is not implemented using conditional probabilities, it and other phenom-
ena are best described and explained by probabilities. Similarly, recent machine
learning models of concept acquisition have proposed that categories can be
best learned by maintaining conditional probabilities (Schlimmer, 1986; Fisher,
1987). These psychological and machine learning studies suggest that an ad-
equate model of human and machine attentional learning should demonstrate
how the attention mechanism can facilitate learning of conditional probabilities
or estimates thereof.

This paper presents a new model of the use of attention for observational
learning. This model, called Contextually Focused Sampling, introduces a
context controlled attention mechanism, and is proposed as a method both for
human observational learning and for machine learning. This use of context
was partially motivated by the need for dynamic.learning biases (eg. Rendell
et al., 1987) and machine learning studies of the use of probabilistic context
for generalization (eg. Fisher, 1987). CFS is compared to an important non-
context alternative, Focused Sampling (Billman & Heit, 1988), to demonstrate
its similar behavior for simple learning and: its superior behavior for more
complex learning in which there are multiple important subsets of features.

Focused Sampling

Billman and Heit’s (1988) CARI implementation of the Focused Sampling
(FS) method describes how attention can be used to facilitate observational
learning. Put simply, FS allocates more attention to those features that par-
ticipate in strong correlations or rules. The ‘rules’ and ‘correlations’ referrec
to by Billman and Heit are simply the conditional probability relationships
between features. '

In CARI, two features, such as color and size, are sampled, and a pre-
diction of the value of the second feature is made on the basis of the value
for the first feature. All training examples were assumed to be collections of
feature/value pairs, and sampling a feature reveals that feature’s value. For
example, the color feature, when sampled, might be found to have the value
‘green’. If the prediction of the second value is correct, then the saliences of
the features and the strength of the prediction are incremented. Otherwise,
{"1ese values are decremented. The adjustment of the values is based on an
estimator of conditional probabilities called the delta rule. This estimator, in
similar forms, has been used in many psychological learning models (Rescorla,
1972; Rumelhart, Hinton, & Williams, 1986). CARI updates the rule strength
and feature saliences by,

Sn = S,,_l + a[T -S _1]

S, = Strength or Salience; a = learning rate parameter
T = 1, if prediction is correct; T = 0, otherwise.

FS is an attentional learning mechanism that supports learning of corre-
lational structure (Billman et al., 1987; Billman & Heit, 1988); and there are
two major learning behaviors of the model that any viable alternative must
also demonstrate.

e First, F'S produces a facilitation in learning as compared to random sam-
pling of features (Billman & Heit, 1988);

e Second, particular rules are learned faster when they are part of a sys-
tem of interrelated rules than when they occur in isolation. Billman and
her colleagues term this effect clustered feature facilitation. Human sub-
jects have demonstrated this effect for observational learning of a novel
language (Billman et al., 1987). ’

Contextually Focused Sampling

Humans are able to use information that they already know about an exam-
ple to direct their attention to unusual aspects of the same example (Loftus &

Mackworth, 1978). Secondly, some multiple-look attention models (Trabasso
& Bower, 1968) suggest an averaging method for taking what is known into
account for response generation. A final reason to suspect that context can be
important for focusing attention in learning is that algorithms like FS would
not allow a human or machine learner to focus on different cohesive subparts
of an example. For instance, there are many subsets of animal features that
internally cohere, like food-type and size or habitat and means-of-locomotion.
FS, however, assumes that there is only one important subset. An alternative
model will be proposed that introduces a limited form of context for feature
sampling. The use of the word ‘context’ in this work refers specifically to known
feature values of a particular example. Using context for attention therefore
refers to using those feature values that have already been observed to help
choose other features to which to attend.

The method proposed by this paper, Contextually Focused Sampling (CFS),
based on their estimated predictability. It calculates those estimates based di-
rectly upon estimates of conditional probability between feature values. In CFS
(Figure 1) then, choosing a feature depcnds upon that feature’s predictability
given what value are already known. This method allows the probability of
sampling a particular feature to vary with the context.

+» Choose a starting feature F1 . The probability of sampling
a featura is that feature’s no-context salience divided by
the sum of the no-context saliences for all features.

* Sample the value, v ¢, for Fy .

+Loop for i=2.. n (where n is a parametar)

- Choose feature Fj . Features are chosen that are best
predicted by what is already known about an example
(V... %). An estimate is made of each feature's
predictability, and this is used to probabilistically
choose a feature.

- Find the value, v; , for F; in the example.

- Increment the estimate of conditional probability for all
of the form: P(v’ |vk). wherejandks= 1., i j=k.

- When =2, increment the no-context saliences as described
by Bilman & Heit (1988).

Figure 1:- Contextually Focused Sampling Algorithm

The CFS algorithm, like the FS, uses the delta rule to update the estimates
of conditional probabilities and no-context feature saliences. The no-context

4

feature saliences are used for sampling when nothing is yet known about an
example. Feature saliences in context, because they are based solely on the
estimates of the conditional probabilities, are indirectly updated. Animportant
difference between CFS and FS is that CFS allows multiple samples to be taken
from each example in order to provide context.

CFS, unlike FS, requires an algorithm for estimating predictiveness in con-
text, i.e., when several features have already been sampled. It is not reasonable
to maintain all such higher order probabilities, because there are exponentially
many of them. The most straightforward alternative is to use a Bayesian es-
timate assuming independence (Martin, 1988). However, pilot studies have
shown that an arithmetic average (Trabasso & Bower, 1968) is better corre-
lated to actual higher order conditional probabilities for the types of training
example being used. Davis (1985) gives an argument for the use of a geometric
average in a similar machine learning system.

Experimental Tests of CFS

CFS was compared to FS in three experiments. The first two experiments
were performed to demonstrate that CFS is a viable alternative to FS. Exper-
iment III was conducted to determine whether CFS is superior to F'S for more
complex inputs.

Algorithms. The experiments performed comparisons between three al-
gorithms, Random Sampling (RS), FS, and CFS. In general, it is difficult to
compare algorithms because they often differ in more than one characteristic.
For instance, CFS and FS differ not only by how a feature is sampled but
also by how many features are processed per example. FS samples exactly
two features, while CF'S can sample several. These extraneous differences can
confound a comparison on the characteristic of interest. It is therefore impor-
tant to remove as many extraneous differences as possible before comparisons
are made. The FS algorithm was modified to incorporate the loop from the
CFS algorithm. The only difference between the FS and CFS algorithms was
that the former always used salience to select features for sampling. The RS
algorithm was like the CFS algorithm, except that it selected features indepen-
dently of salience and estimates of conditional probabilities. These versions of
the RS, FS, and CFS algorithms were used in all experiments.

General Method. The general method used for all three experiments was
very similar to that used by Billman and Heit (1988). The input was provided
as lists of digits in the form, (1 2 3 2), to represent that the features 1 through
4 have the values 1, 2, 3, 2 respectively. These number vectors are used for sim-
plicity but are meant to represent vectors such as, (covering=fur, habitat=land,

size=big, locomotion=legs). In all three experiments, the inputs consisted of
eight features (Figure 2). These inputs were presented one at a time as exam-
ples. Each trial consisted of presenting one example that was randomly selected
from all available inputs. These trials were divided into blocks of 50. As in Bill-
man and Heit (1988), the strengths between the values of the first two features
were averaged to measure learning after each block of trials. In all sets of train-
ing examples, the first two features were strongly related. The test strengths
were, (fi=1—- fh=1f=1>fi=1,fi=2—>f1=2,/=2— f1 =2}
Statistical comparisons were made based on the average target strength after
a criterion number of trial blocks. The criterion was set for each experiment
when the mean strength for RS was equal to 0.50 & 2, as in Billman and Heit
(1988).

(11111211)(11112121) (11121111) (22111221)

(22221121)(22222211) (11122222)(22112112)

(11111222)(11112112) (11211122)((22221212)

(22221112)((222222122) (11212211) (22222121)
a b

Figure 2: Input Vectors used in the Experiments.

For all experiments, the variable parameters were set to the values used by
1.illman & Heit (1988) and were held constant for all experiments. The initial
strength values were set to 0.01, initial feature saliences were set to 0.125,
and delta learning rates were set to 0.02. CFS and the modified FS and RS
algorithms have one additional parameter, the number of features sampled per
example. Pilot studies demonstrated that as this parameter raises, learning
facilitation increases. This parameter was set at 3 samples per example for
all algorithms throughout the experiments to reflect the limited capacity of
attention and to achieve some benefit of context for CFS.

Fifteen simulated subjects were run in each condition. These subjects varied
due to probabilistic sampling and random example selection.

Experiment I & II

CFS should be able to demonstrate the significant behaviors of Focused
Sampling. The first of the two important FS behaviors is a facilitation of
learning as compared to random sampling. In Experiment I, CFS was predicted
to produce a learning facilitation because, like FS, CFS’s focusing mechanism
leads it away from irrelevant features.

CFS should also show increasing facilitation for greater numbers of inter-
related features. As noted above, FS predicts facilitated learning for greater

numbers of clustered features. In Experiment II, CFS is predicted to show clus-
ered feature facilitation because the CFS sampling is biased toward features
that are interpredictive. '

Method.In experiment I, the subjects received the inputs presented in
Figure 2a. These inputs were chosen to maximize FS benefit by interrelating
half the features (Billman & Heit, 1988, experiment 3). The remaining four
features were termed irrelevant because they are each randomly related to any
other feature. Experiment I compared between the different attention methods,
random sampling, FS, and CFS.

The method for Experiment II was the same as for Experiment I, except
that the both sets of inputs from Figure 2a and Figure 2b were used. Fifteen
simulated CFS subjects received inputs with two clustered features and 15
received inputs with four clustered features. The learning measure used for
each set of inputs was the difference in learning between using the CFS and
RS algorithms.

Results. The learning rates depicted in Figure 3 show clear effects of at-
tention method.

An ANOVA was performed using the strength values at the criterion num-
ber of trials as defined above. Attention method showed a significant effect,
F(2,42) = 33.66, p < 0.01. Tukey’s HSD was used to compare means for the at-
tention method to determine significant differences: HSD(3,42) = 0.079,p <
0.01. The comparisons revealed that both CFS and FS showed facilitation over
the random method. Although CFS produced a greater facilitation than FS,
this difference was not significant. These data demonstrate that CFS produces
the same type of learning facilitation as FS.

In Experiment II, there was an greater facilitation for clusters of four fea-
tures rather *han two. A t-test was performed at the learning criterion for
the four clustered feature condition, t(28) = 2.73,p < 0.01. The test showed
that, as with FS and in accord with human data, CFS demonstrated clustered
feature facilitation.

0.9 4

0.8]
071
06-
05
0.4+

0.3

L

0.2 1
0.1 -

Strength

L e g

0.0 ~Frrrrrrrr—rrrrrrrrrrr- P

0 5 10 15 20 25 30 35 40
Blocks of 50 Trlals

Figure 3: Learning with Different Attention Methods

Experiment III

As predicted, CFS produces two findings which motivated the FS model.
It was assumed that because it was sensitive to context, CFS would predict
greater learning facilitation for more complex inputs than would FS. Both
Experiment I and II and the experiments of Billman and Heit (1988) have
used inputs in which there was only one important cluster of features. That is,
there are some relevant features and some irrelevant features, and all relevant
features are intercorrelated. However, more realistic inputs would allow for
multiple clusters of relevant features. For example, in humans, hair-color and
eye-color are somewhat intercorrelated as are arm-length and height. All four
of these features are relevant to feature clusters, but are not all intercorrelated.

Context is important for attentional learning in domains with multiple clus-
ters because it allows the human or machine learner to concentrate on a sin-
gle subcluster at a time. The non-context approach used by FS would set
the saliences of the features independently of the cluster, permitting sampling
across clusters. For example, if hair-color was the most salient and height
the second most salient then the most frequent sampling pair would be across
clusters. CFS can help alleviate this problem, because it allows the feature
saliences to vary depending on what has already been sampled. In the above
example, af_. hair-cclo- was sampled, then the most salient feature became
eye-color. ‘The saliences in CFS are modified to have the learning focus on one
cluster at a time.

Because of these considerations, it was predicted that CFS would be found
to be superior to F'S when there were multiple unrelated clusters of features in
the input. As well, FS was expected to have a decreased learning facilitation
as compared to random sampling.

Method. The method was the same as for Experiment I and II, except
that the inputs had three clusters of three features each and three irrelevant
features. The three clusters of features were independent of each other. All
three algorithms were compared on these inputs. The learning measure, as in
Experiment I, was the average strength of the rules relating features one and
two; and statistical comparisons were made at the criterion number of trials.

Results. Figure 4 shows the learning curves for each block of 100 trials.
There was an increased facilitation for CFS over FS and RS. An ANOVA was
performed that indicated a significant difference between algorithms: F(2, 42) =
31.21,p < 0.01. Tukey’s HSD, HSD(3,42) = 0.082,p < 0.01, revealed a sig-
nificant difference between CFS and both other groups. FS was not found to
be significantly different from random sampling.

As predicted, CFS was superior to FS and RS for inputs with multiple clus-
‘ters. As well, the multiple clusters prevented a significant learning facilitation
v for FS over RS. ’ :

0.0 +rrrrrrrrr v L e

T

0 5 10 15 20 25 30 35 40
Blocks of 100 Trials

Figure 4: Learning for Examples with Multiple Clusters

Discussion

Attention can serve as an important learning bias for learning by obser-
vation. The type of attention mechanism used, however, should be sensitive
to context if the training examples are complex, i.e., have multiple clusters.
Contextually Focused Sampling (CFS) was proposed to be a better match to
human attentional processes than earlier models that were not sensitive to
context (Billman & Heit, 1988). CFS is also an important candidate for an
attentional bias in machine learning systems.

These computational experiments suggest several interesting predictions
about human learning. First, if humans use either FS or CFS, then they
must show faster learning than random sampling (RS) would permit. Second,
if humans use CFS and not FS, they should demonstrate faster learning of
multiple clusters than either FS or RS would permit. Finally, CFS would
predict that humans would show different probabilities of sampling particular
features depending upon what they had already sampled.

For machine learning, the results imply that CFS can be used to make
induction more feasible. Additionally, the results of Experiment III suggest
how CFS might be used to divide a set of training examples into appropriate
categories of interpredictive features. Because CFS is capable of finding and
learning about multiple subclusters of interrelated features, it can provide a
method for constructing a hierarchy of probabilistic concepts. The use of
focused attention to easily isolate these concepts may result in an algorithm
that is more efficient and more powerful than current concept learning methods
(Fisher, 1987). Such concept acquisition would also allow a CFS system to
learn higher order conditional probabilities to improve its inference capabilities
(Chalnick & Billman, 1988; Davis, 1985).

——

ey

References

Anderson, J. R. (1988). The place of cognitive architectures in a rational analysis. In Pro-
ceedings of Tenth Annual Conference of the Cognitive Science Socsety.

Billman, D. & Heit, E. (in press). Observational learning from internal feedback: a simula-
tion of an adaptive learning method. Cognitive Scsence.

Billman, D., Heit, E., & Dorfman, J. (1987). Facilitation from clustered features: using
correlations in observational learning. In Proceedings of Ninth Annual Conference of the
Cognitive Science Socsety.

Chalnick, A. & Billman, D. (1988). Unsupervised learning of correlational structure. In
Proceedings of Tenth Annual Conference of the Cognitive Science Socsety.

Davis, B. R. (1985). An associative hierarchical self-organizing system. IEEE Transactions
on Systems, Man, and Cybernetics, 15, 570-579.

Fisher, D. (1987). Knowledge acquisition via incremental conceptual clustering. Machine
Learning, 8, 139-172.

Loftus, G. R. & Mackworth, N. H. (1978). Cognitive determinants of fixation location during
picture viewing. Journal of Ezperimental Psychology: Human Performance and Perception,
4, 565-572.

Martin, J. D. (1988). Cora: a best match memory for case storage and retrieval In Pro-
ceedings of AAAI Case-Based Reasonsng Workshop.

Medin, D. L. & Schaffer, M. M. (1978). A context theory of classification learning. Psycho-
logscal Review, 85, 207-238.

Rendell, L., Seshu, R., & Tcheng, D. (1987). More robust concept learning using
dynamically-variable bias. In Proceedings of the Fourth International Workshop on Machine
Learning.

Rescorla, R. A. (1972). Informational variables in pavlovian conditioning. In G. H. Bower
(Ed.), The Psychology of Learning and Motivation. New York: Academic Press.

Rosch, E. H. (1978). Principles of categorisation. In E. H. Rosch & B. B. Lloyd (Eds.),
Cognistion and Categorization. Hillsdale, NJ: Erlbaum.

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning internal representations

by esror propogation. In D. E. Rumelhart & J. L. McClelland (Eds.), Parallel Distributed
Processing, Vol 1. Cambridge, Massachusetts: MIT Press.

Schlimmer, J. C. (1987). Incremental adjustment of representations for learning. In Pro-
ceedings of the Fourth International Workshop on Machine Learning.

Trabasso, T. & Bower, G. H. (1968). Attention in Learning. New York: Wiley.

Zeaman, D. & House, B. J. (1963). The role of attention inretardate discrimination learning.
In N. R. Ellis (Ed.), Handbook of Mental Deficiency. New York: McGraw Hill

10

